Matches in SemOpenAlex for { <https://semopenalex.org/work/W3083469263> ?p ?o ?g. }
- W3083469263 endingPage "106700" @default.
- W3083469263 startingPage "106700" @default.
- W3083469263 abstract "Robots for rescue operations after a disaster are an interesting and challenging research problem that has the potential to save lives and reduce economic losses after a disaster. We developed TOPTWR, an extension of the popular TOPTW model, to model the issues in task allocation for teams of rescue robots. Our hybrid algorithm is based on a team of heterogeneous humanoid robots trying to optimize five objectives (task rewards, task completion time, total energy, maximum energy consumption for a single robot, and missed deadline penalties). A common approach to solve these kinds of problems are multi-objective evolutionary algorithms (MOEAs), but their major disadvantage is that they cannot deal with dynamic environments easily. This paper presents an efficient solution for TOPTWR by combining MOEAs with learning algorithms. A novel Extended Multi-Start Simulated Annealing Iterated Local Search (EMSAILS) operator using a modern state-of-the-art NSGA-III algorithm is proposed. In addition, we applied Q-Learning to learn the likely changes in the environment and how to react to them. This algorithm, HMO-TOPTWR-NSGA-III (HMO-N-L), uses an artificial neural network (ANN) as a function approximator to make the huge state and action spaces tractable. This paper includes a thorough empirical evaluation demonstrating the effectiveness of the multi-objective algorithm in both static and dynamic environments. The evaluation shows that the proposed algorithm reduces the error by up to 42% against three state-of-the-art approaches to TOPTW (HMO-N, MSA, and IPI)." @default.
- W3083469263 created "2020-09-11" @default.
- W3083469263 creator A5007304954 @default.
- W3083469263 creator A5013737563 @default.
- W3083469263 creator A5083823417 @default.
- W3083469263 date "2020-11-01" @default.
- W3083469263 modified "2023-10-18" @default.
- W3083469263 title "Novel hybrid algorithm for Team Orienteering Problem with Time Windows for rescue applications" @default.
- W3083469263 cites W1898154573 @default.
- W3083469263 cites W1965880265 @default.
- W3083469263 cites W1969472392 @default.
- W3083469263 cites W1975531364 @default.
- W3083469263 cites W1975828823 @default.
- W3083469263 cites W1982966841 @default.
- W3083469263 cites W1983758874 @default.
- W3083469263 cites W1987410813 @default.
- W3083469263 cites W1989432959 @default.
- W3083469263 cites W1991744719 @default.
- W3083469263 cites W1995201018 @default.
- W3083469263 cites W1995279652 @default.
- W3083469263 cites W1996723851 @default.
- W3083469263 cites W1998001670 @default.
- W3083469263 cites W2002515846 @default.
- W3083469263 cites W2003262034 @default.
- W3083469263 cites W2003281104 @default.
- W3083469263 cites W2014556603 @default.
- W3083469263 cites W2022485595 @default.
- W3083469263 cites W2022487853 @default.
- W3083469263 cites W2026904884 @default.
- W3083469263 cites W2036573713 @default.
- W3083469263 cites W2039766013 @default.
- W3083469263 cites W2046806484 @default.
- W3083469263 cites W2050819731 @default.
- W3083469263 cites W2058995871 @default.
- W3083469263 cites W2061594663 @default.
- W3083469263 cites W2076422387 @default.
- W3083469263 cites W2077215180 @default.
- W3083469263 cites W2078256564 @default.
- W3083469263 cites W2094667998 @default.
- W3083469263 cites W2096305430 @default.
- W3083469263 cites W2098907614 @default.
- W3083469263 cites W2099618002 @default.
- W3083469263 cites W2106334424 @default.
- W3083469263 cites W2113873983 @default.
- W3083469263 cites W2126105956 @default.
- W3083469263 cites W2140886193 @default.
- W3083469263 cites W2143381319 @default.
- W3083469263 cites W2144351850 @default.
- W3083469263 cites W2155482699 @default.
- W3083469263 cites W2160320854 @default.
- W3083469263 cites W2161481732 @default.
- W3083469263 cites W2293302471 @default.
- W3083469263 cites W2346699423 @default.
- W3083469263 cites W2413992829 @default.
- W3083469263 cites W2515724774 @default.
- W3083469263 cites W2530291931 @default.
- W3083469263 cites W2531521796 @default.
- W3083469263 cites W2537545174 @default.
- W3083469263 cites W2553769569 @default.
- W3083469263 cites W2581421322 @default.
- W3083469263 cites W2595700172 @default.
- W3083469263 cites W2606765271 @default.
- W3083469263 cites W2625062492 @default.
- W3083469263 cites W2658205927 @default.
- W3083469263 cites W2751296981 @default.
- W3083469263 cites W2756720074 @default.
- W3083469263 cites W2767166014 @default.
- W3083469263 cites W2788705157 @default.
- W3083469263 cites W2793817671 @default.
- W3083469263 cites W2804702944 @default.
- W3083469263 cites W2898358362 @default.
- W3083469263 cites W2901273912 @default.
- W3083469263 cites W2909272244 @default.
- W3083469263 cites W2962996339 @default.
- W3083469263 cites W2981989034 @default.
- W3083469263 cites W2991784921 @default.
- W3083469263 cites W2994241268 @default.
- W3083469263 cites W2996197795 @default.
- W3083469263 cites W2998566163 @default.
- W3083469263 cites W32403112 @default.
- W3083469263 cites W4232670376 @default.
- W3083469263 cites W759229525 @default.
- W3083469263 doi "https://doi.org/10.1016/j.asoc.2020.106700" @default.
- W3083469263 hasPublicationYear "2020" @default.
- W3083469263 type Work @default.
- W3083469263 sameAs 3083469263 @default.
- W3083469263 citedByCount "14" @default.
- W3083469263 countsByYear W30834692632021 @default.
- W3083469263 countsByYear W30834692632022 @default.
- W3083469263 countsByYear W30834692632023 @default.
- W3083469263 crossrefType "journal-article" @default.
- W3083469263 hasAuthorship W3083469263A5007304954 @default.
- W3083469263 hasAuthorship W3083469263A5013737563 @default.
- W3083469263 hasAuthorship W3083469263A5083823417 @default.
- W3083469263 hasConcept C11413529 @default.
- W3083469263 hasConcept C126255220 @default.
- W3083469263 hasConcept C126980161 @default.
- W3083469263 hasConcept C154945302 @default.