Matches in SemOpenAlex for { <https://semopenalex.org/work/W3083483148> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3083483148 endingPage "157653" @default.
- W3083483148 startingPage "157643" @default.
- W3083483148 abstract "Machine learning (ML) and large-scale big data are key factors in developing an accurate prediction model for cardiovascular disease (CVD). Although the CVD risk often depends on the race and ethnicity, most previous studies considered only US or European populations for the CVD risk prediction. In this work, to complement previous researches, we analyzed the Korean National Health Insurance Service-National Health Sample Cohort (KNHSC) data and studied the characteristics of ML and big data for predicting the CVD risk. More specifically, we assessed the effectiveness of various ML methods in predicting the 2-year and 10-year risk of CVD such as atrial fibrillation, coronary artery disease, heart failure, and strokes. To develop prediction models, we considered the usual medical examination data, questionnaire survey results, comorbidities, and past medication information available in the KNHSC data. We developed various ML-based prediction models using logistic regression, deep neural networks, random forests, and LightGBM, and validated them using various metrics such as receiver operating characteristic curves, precision-recall curves, sensitivity, specificity, and F1 score. Experimental results showed that all ML models outperformed the baseline method derived from the ACC/AHA guidelines for estimating the 10-year CVD risk, demonstrating the usefulness of ML methods. In addition, in our analysis, whether we included the past medication information as a feature or not, the prediction accuracy of all ML models was comparable to each other. Since the use of medications by the physicians provided important information on the occurrence of diseases, when we included it as a feature, all prediction models achieved a slightly higher prediction accuracy." @default.
- W3083483148 created "2020-09-11" @default.
- W3083483148 creator A5010287330 @default.
- W3083483148 creator A5034809306 @default.
- W3083483148 creator A5052555237 @default.
- W3083483148 creator A5058073637 @default.
- W3083483148 date "2020-01-01" @default.
- W3083483148 modified "2023-10-01" @default.
- W3083483148 title "Clinical Implication of Machine Learning in Predicting the Occurrence of Cardiovascular Disease Using Big Data (Nationwide Cohort Data in Korea)" @default.
- W3083483148 cites W1678356000 @default.
- W3083483148 cites W1998083759 @default.
- W3083483148 cites W2114775432 @default.
- W3083483148 cites W2161700992 @default.
- W3083483148 cites W2302877473 @default.
- W3083483148 cites W2402599050 @default.
- W3083483148 cites W2557738935 @default.
- W3083483148 cites W2592929672 @default.
- W3083483148 cites W2605253636 @default.
- W3083483148 cites W2727644753 @default.
- W3083483148 cites W2750902029 @default.
- W3083483148 cites W2765887994 @default.
- W3083483148 cites W2806930130 @default.
- W3083483148 cites W2883464116 @default.
- W3083483148 cites W2886982273 @default.
- W3083483148 cites W2894224013 @default.
- W3083483148 cites W2896817483 @default.
- W3083483148 cites W2896820629 @default.
- W3083483148 cites W2901226889 @default.
- W3083483148 cites W2911964244 @default.
- W3083483148 cites W2940682892 @default.
- W3083483148 cites W2941386706 @default.
- W3083483148 cites W2945583287 @default.
- W3083483148 cites W2946751363 @default.
- W3083483148 cites W2961085424 @default.
- W3083483148 cites W2986446268 @default.
- W3083483148 cites W3001764054 @default.
- W3083483148 doi "https://doi.org/10.1109/access.2020.3015757" @default.
- W3083483148 hasPublicationYear "2020" @default.
- W3083483148 type Work @default.
- W3083483148 sameAs 3083483148 @default.
- W3083483148 citedByCount "29" @default.
- W3083483148 countsByYear W30834831482021 @default.
- W3083483148 countsByYear W30834831482022 @default.
- W3083483148 countsByYear W30834831482023 @default.
- W3083483148 crossrefType "journal-article" @default.
- W3083483148 hasAuthorship W3083483148A5010287330 @default.
- W3083483148 hasAuthorship W3083483148A5034809306 @default.
- W3083483148 hasAuthorship W3083483148A5052555237 @default.
- W3083483148 hasAuthorship W3083483148A5058073637 @default.
- W3083483148 hasBestOaLocation W30834831481 @default.
- W3083483148 hasConcept C119857082 @default.
- W3083483148 hasConcept C124101348 @default.
- W3083483148 hasConcept C126322002 @default.
- W3083483148 hasConcept C151956035 @default.
- W3083483148 hasConcept C154945302 @default.
- W3083483148 hasConcept C169258074 @default.
- W3083483148 hasConcept C2779134260 @default.
- W3083483148 hasConcept C2779161974 @default.
- W3083483148 hasConcept C41008148 @default.
- W3083483148 hasConcept C45804977 @default.
- W3083483148 hasConcept C58471807 @default.
- W3083483148 hasConcept C71924100 @default.
- W3083483148 hasConcept C72563966 @default.
- W3083483148 hasConcept C75684735 @default.
- W3083483148 hasConceptScore W3083483148C119857082 @default.
- W3083483148 hasConceptScore W3083483148C124101348 @default.
- W3083483148 hasConceptScore W3083483148C126322002 @default.
- W3083483148 hasConceptScore W3083483148C151956035 @default.
- W3083483148 hasConceptScore W3083483148C154945302 @default.
- W3083483148 hasConceptScore W3083483148C169258074 @default.
- W3083483148 hasConceptScore W3083483148C2779134260 @default.
- W3083483148 hasConceptScore W3083483148C2779161974 @default.
- W3083483148 hasConceptScore W3083483148C41008148 @default.
- W3083483148 hasConceptScore W3083483148C45804977 @default.
- W3083483148 hasConceptScore W3083483148C58471807 @default.
- W3083483148 hasConceptScore W3083483148C71924100 @default.
- W3083483148 hasConceptScore W3083483148C72563966 @default.
- W3083483148 hasConceptScore W3083483148C75684735 @default.
- W3083483148 hasFunder F4320322120 @default.
- W3083483148 hasLocation W30834831481 @default.
- W3083483148 hasOpenAccess W3083483148 @default.
- W3083483148 hasPrimaryLocation W30834831481 @default.
- W3083483148 hasRelatedWork W2801441706 @default.
- W3083483148 hasRelatedWork W3004984807 @default.
- W3083483148 hasRelatedWork W3047552631 @default.
- W3083483148 hasRelatedWork W3147757603 @default.
- W3083483148 hasRelatedWork W3157307328 @default.
- W3083483148 hasRelatedWork W3198710639 @default.
- W3083483148 hasRelatedWork W4319993359 @default.
- W3083483148 hasRelatedWork W4366151905 @default.
- W3083483148 hasRelatedWork W4376054933 @default.
- W3083483148 hasRelatedWork W4383535405 @default.
- W3083483148 hasVolume "8" @default.
- W3083483148 isParatext "false" @default.
- W3083483148 isRetracted "false" @default.
- W3083483148 magId "3083483148" @default.
- W3083483148 workType "article" @default.