Matches in SemOpenAlex for { <https://semopenalex.org/work/W3083577152> ?p ?o ?g. }
- W3083577152 abstract "Intelligent transportation is a cornerstone of smart cities' infrastructure. Its practical realisation has been attempted by various technological means (ranging from machine learning to evolutionary approaches), all aimed at informing urban decision making (e.g., road layout design), in environmentally and financially sustainable ways. In this paper, we focus on traffic modelling and prediction, both central to intelligent transportation. We formulate this challenge as a symbolic regression problem and solve it using Genetic Programming, which we enhance with a lag operator and transfer learning. The resulting algorithm utilises knowledge collected from other road segments in order to predict vehicle flow through a junction where traffic data are not available. The experimental results obtained on the Darmstadt case study show that our approach is successful at producing accurate models without increasing training time." @default.
- W3083577152 created "2020-09-11" @default.
- W3083577152 creator A5009795166 @default.
- W3083577152 creator A5051266418 @default.
- W3083577152 creator A5065742113 @default.
- W3083577152 creator A5076983719 @default.
- W3083577152 date "2020-07-01" @default.
- W3083577152 modified "2023-10-16" @default.
- W3083577152 title "Genetic Programming with Transfer Learning for Urban Traffic Modelling and Prediction" @default.
- W3083577152 cites W129861917 @default.
- W3083577152 cites W1509749701 @default.
- W3083577152 cites W1538597521 @default.
- W3083577152 cites W1586648962 @default.
- W3083577152 cites W1591943994 @default.
- W3083577152 cites W1601655690 @default.
- W3083577152 cites W1967258332 @default.
- W3083577152 cites W1986614398 @default.
- W3083577152 cites W2029181554 @default.
- W3083577152 cites W2080271103 @default.
- W3083577152 cites W2108196201 @default.
- W3083577152 cites W2120235997 @default.
- W3083577152 cites W2139118622 @default.
- W3083577152 cites W2157762168 @default.
- W3083577152 cites W2165698076 @default.
- W3083577152 cites W2391037491 @default.
- W3083577152 cites W2558577118 @default.
- W3083577152 cites W2579851192 @default.
- W3083577152 cites W2606518250 @default.
- W3083577152 cites W2607681021 @default.
- W3083577152 cites W2725100189 @default.
- W3083577152 cites W2747158158 @default.
- W3083577152 cites W2749247755 @default.
- W3083577152 cites W2763108738 @default.
- W3083577152 cites W2783272115 @default.
- W3083577152 cites W2805454266 @default.
- W3083577152 cites W2884756263 @default.
- W3083577152 cites W2887292121 @default.
- W3083577152 cites W2901426023 @default.
- W3083577152 cites W2902043212 @default.
- W3083577152 cites W2907834603 @default.
- W3083577152 cites W2920948739 @default.
- W3083577152 cites W2944048435 @default.
- W3083577152 cites W2944135346 @default.
- W3083577152 cites W2946090323 @default.
- W3083577152 cites W2954074284 @default.
- W3083577152 cites W2982960219 @default.
- W3083577152 doi "https://doi.org/10.1109/cec48606.2020.9185880" @default.
- W3083577152 hasPublicationYear "2020" @default.
- W3083577152 type Work @default.
- W3083577152 sameAs 3083577152 @default.
- W3083577152 citedByCount "5" @default.
- W3083577152 countsByYear W30835771522022 @default.
- W3083577152 countsByYear W30835771522023 @default.
- W3083577152 crossrefType "proceedings-article" @default.
- W3083577152 hasAuthorship W3083577152A5009795166 @default.
- W3083577152 hasAuthorship W3083577152A5051266418 @default.
- W3083577152 hasAuthorship W3083577152A5065742113 @default.
- W3083577152 hasAuthorship W3083577152A5076983719 @default.
- W3083577152 hasConcept C105902424 @default.
- W3083577152 hasConcept C110332635 @default.
- W3083577152 hasConcept C119857082 @default.
- W3083577152 hasConcept C121332964 @default.
- W3083577152 hasConcept C127413603 @default.
- W3083577152 hasConcept C142362112 @default.
- W3083577152 hasConcept C150899416 @default.
- W3083577152 hasConcept C153349607 @default.
- W3083577152 hasConcept C154945302 @default.
- W3083577152 hasConcept C207512268 @default.
- W3083577152 hasConcept C22212356 @default.
- W3083577152 hasConcept C2776400721 @default.
- W3083577152 hasConcept C2779462738 @default.
- W3083577152 hasConcept C2780616401 @default.
- W3083577152 hasConcept C31258907 @default.
- W3083577152 hasConcept C38652104 @default.
- W3083577152 hasConcept C41008148 @default.
- W3083577152 hasConcept C47796450 @default.
- W3083577152 hasConcept C62520636 @default.
- W3083577152 hasConcept C75778745 @default.
- W3083577152 hasConcept C8880873 @default.
- W3083577152 hasConceptScore W3083577152C105902424 @default.
- W3083577152 hasConceptScore W3083577152C110332635 @default.
- W3083577152 hasConceptScore W3083577152C119857082 @default.
- W3083577152 hasConceptScore W3083577152C121332964 @default.
- W3083577152 hasConceptScore W3083577152C127413603 @default.
- W3083577152 hasConceptScore W3083577152C142362112 @default.
- W3083577152 hasConceptScore W3083577152C150899416 @default.
- W3083577152 hasConceptScore W3083577152C153349607 @default.
- W3083577152 hasConceptScore W3083577152C154945302 @default.
- W3083577152 hasConceptScore W3083577152C207512268 @default.
- W3083577152 hasConceptScore W3083577152C22212356 @default.
- W3083577152 hasConceptScore W3083577152C2776400721 @default.
- W3083577152 hasConceptScore W3083577152C2779462738 @default.
- W3083577152 hasConceptScore W3083577152C2780616401 @default.
- W3083577152 hasConceptScore W3083577152C31258907 @default.
- W3083577152 hasConceptScore W3083577152C38652104 @default.
- W3083577152 hasConceptScore W3083577152C41008148 @default.
- W3083577152 hasConceptScore W3083577152C47796450 @default.
- W3083577152 hasConceptScore W3083577152C62520636 @default.
- W3083577152 hasConceptScore W3083577152C75778745 @default.
- W3083577152 hasConceptScore W3083577152C8880873 @default.