Matches in SemOpenAlex for { <https://semopenalex.org/work/W3083630348> ?p ?o ?g. }
- W3083630348 endingPage "161395" @default.
- W3083630348 startingPage "161377" @default.
- W3083630348 abstract "Multi-microgrid (MMG) system is a new method that concurrently incorporates different types of distributed energy resources, energy storage systems and demand responses to provide reliable and independent electricity for the community. However, MMG system faces the problems of management, real-time economic operations and controls. Therefore, this study proposes an energy management system (EMS) that turns an infinite number of MMGs into a coherence and efficient system, where each MMG can achieve its goals and perspectives. The proposed EMS employs a cooperative game to achieve efficient coordination and operations of the MMG system and also ensures a fair energy cost allocation among members in the coalition. This study considers the energy cost allocation problem when the number of members in the coalition grows exponentially. The energy cost allocation problem is solved using a column generation algorithm. The proposed model includes energy storage systems, demand loads, real-time electricity prices and renewable energy. The estimate of the daily operating cost of the MMG using a proposed deep convolutional neural network (CNN) is analyzed in this study. An optimal scheduling policy to optimize the total daily operating cost of MMG is also proposed. Besides, other existing optimal scheduling policies, such as approximate dynamic programming (ADP), model prediction control (MPC), and greedy policy are considered for the comparison. To evaluate the effectiveness of the proposed model, the real-time electricity prices of the electric reliability council of Texas are used. Simulation results show that each MMG can achieve energy cost savings through a coalition of MMG. Moreover, the proposed optimal policy method achieves MG's daily operating cost reduction up to 87.86% as compared to 79.52% for the MPC method, 73.94% for the greedy policy method and 79.42% for ADP method." @default.
- W3083630348 created "2020-09-11" @default.
- W3083630348 creator A5005663552 @default.
- W3083630348 creator A5006531094 @default.
- W3083630348 creator A5031266051 @default.
- W3083630348 creator A5031593378 @default.
- W3083630348 creator A5055380996 @default.
- W3083630348 creator A5057824034 @default.
- W3083630348 creator A5091305250 @default.
- W3083630348 date "2020-01-01" @default.
- W3083630348 modified "2023-10-16" @default.
- W3083630348 title "Towards Real-Time Energy Management of Multi-Microgrid Using a Deep Convolution Neural Network and Cooperative Game Approach" @default.
- W3083630348 cites W1995257826 @default.
- W3083630348 cites W2059171997 @default.
- W3083630348 cites W2115096495 @default.
- W3083630348 cites W2167580124 @default.
- W3083630348 cites W2295959395 @default.
- W3083630348 cites W2345210615 @default.
- W3083630348 cites W2414493401 @default.
- W3083630348 cites W2433743436 @default.
- W3083630348 cites W2557176072 @default.
- W3083630348 cites W2560199170 @default.
- W3083630348 cites W2561946193 @default.
- W3083630348 cites W2570163643 @default.
- W3083630348 cites W2576210365 @default.
- W3083630348 cites W2579255320 @default.
- W3083630348 cites W2581411158 @default.
- W3083630348 cites W2606113859 @default.
- W3083630348 cites W2611490092 @default.
- W3083630348 cites W2612769171 @default.
- W3083630348 cites W2638230244 @default.
- W3083630348 cites W2698676553 @default.
- W3083630348 cites W2750306247 @default.
- W3083630348 cites W2763128055 @default.
- W3083630348 cites W2763311819 @default.
- W3083630348 cites W2777216400 @default.
- W3083630348 cites W2779890932 @default.
- W3083630348 cites W2780724760 @default.
- W3083630348 cites W2785111396 @default.
- W3083630348 cites W2786530024 @default.
- W3083630348 cites W2788020135 @default.
- W3083630348 cites W2789789676 @default.
- W3083630348 cites W2791091710 @default.
- W3083630348 cites W2791329134 @default.
- W3083630348 cites W2791521493 @default.
- W3083630348 cites W2797781454 @default.
- W3083630348 cites W2801054673 @default.
- W3083630348 cites W2802706601 @default.
- W3083630348 cites W2804054074 @default.
- W3083630348 cites W2805855567 @default.
- W3083630348 cites W2807870221 @default.
- W3083630348 cites W2809376589 @default.
- W3083630348 cites W2877133098 @default.
- W3083630348 cites W2884320687 @default.
- W3083630348 cites W2889042385 @default.
- W3083630348 cites W2890206490 @default.
- W3083630348 cites W2892122185 @default.
- W3083630348 cites W2903702395 @default.
- W3083630348 cites W2908793491 @default.
- W3083630348 cites W2910070021 @default.
- W3083630348 cites W2912825746 @default.
- W3083630348 cites W2913003226 @default.
- W3083630348 cites W2921523639 @default.
- W3083630348 cites W2922214168 @default.
- W3083630348 cites W2931544713 @default.
- W3083630348 cites W2944036105 @default.
- W3083630348 cites W2945283621 @default.
- W3083630348 cites W2945748599 @default.
- W3083630348 cites W2954104732 @default.
- W3083630348 cites W2954540343 @default.
- W3083630348 cites W2955959049 @default.
- W3083630348 cites W2964015168 @default.
- W3083630348 cites W2967133822 @default.
- W3083630348 cites W2996089041 @default.
- W3083630348 cites W2997275431 @default.
- W3083630348 cites W2997334473 @default.
- W3083630348 cites W3100556636 @default.
- W3083630348 doi "https://doi.org/10.1109/access.2020.3021613" @default.
- W3083630348 hasPublicationYear "2020" @default.
- W3083630348 type Work @default.
- W3083630348 sameAs 3083630348 @default.
- W3083630348 citedByCount "39" @default.
- W3083630348 countsByYear W30836303482020 @default.
- W3083630348 countsByYear W30836303482021 @default.
- W3083630348 countsByYear W30836303482022 @default.
- W3083630348 countsByYear W30836303482023 @default.
- W3083630348 crossrefType "journal-article" @default.
- W3083630348 hasAuthorship W3083630348A5005663552 @default.
- W3083630348 hasAuthorship W3083630348A5006531094 @default.
- W3083630348 hasAuthorship W3083630348A5031266051 @default.
- W3083630348 hasAuthorship W3083630348A5031593378 @default.
- W3083630348 hasAuthorship W3083630348A5055380996 @default.
- W3083630348 hasAuthorship W3083630348A5057824034 @default.
- W3083630348 hasAuthorship W3083630348A5091305250 @default.
- W3083630348 hasBestOaLocation W30836303481 @default.
- W3083630348 hasConcept C105795698 @default.
- W3083630348 hasConcept C126255220 @default.
- W3083630348 hasConcept C154945302 @default.