Matches in SemOpenAlex for { <https://semopenalex.org/work/W3083653072> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3083653072 endingPage "49" @default.
- W3083653072 startingPage "36" @default.
- W3083653072 abstract "Purpose Owing to the consumption of considerable resources in developing physical pipe prediction models and the fact that the statistical models cannot fit the failure records perfectly, the purpose of this paper is to use data mining method to analyze and predict the risks of water pipe failure via considering attributes and location of pipes in historical failure records. One of the Automatized Machine Learning (AutoML) methods, tree-based pipeline optimization technique (TPOT) was used as the key data mining technique in this research. Design/methodology/approach By considering pipeline attributes, environmental factors and historical pipeline broke/breaks records, a water pipeline failure prediction method is proposed in this research. Regression analysis, genetic algorithm, machine learning, data mining approaches are used to analyze and predict the probability of pipeline failure. TPOT was used as the key data mining technique. A case study was carried out in a specific area in China to investigate the relationships between pipeline broke/breaks and relevant parameters, such as pipeline age, materials, diameter, pipeline density and so on. Findings By integrating the prediction models for individual pipelines and small research regions, a prediction model is developed to describe the probability of water pipe failures and validated by real data. A high fitting degree is achieved, which means a good potential of using the proposed method in reality as a guideline for identifying areas with high risks and taking proactive measures and optimizing the resources allocation for water supply companies. Originality/value Different models are developed to have better prediction on regional or individual pipeline. A comparison between the predicted values with real records has shown that a preliminary model has a good potential in predicting the future failure risks." @default.
- W3083653072 created "2020-09-11" @default.
- W3083653072 creator A5039905531 @default.
- W3083653072 creator A5054772474 @default.
- W3083653072 date "2020-09-05" @default.
- W3083653072 modified "2023-10-06" @default.
- W3083653072 title "Water pipe failure prediction using AutoML" @default.
- W3083653072 cites W1581962970 @default.
- W3083653072 cites W1995017913 @default.
- W3083653072 cites W2006952684 @default.
- W3083653072 cites W2007202803 @default.
- W3083653072 cites W2018258364 @default.
- W3083653072 cites W2048414251 @default.
- W3083653072 cites W2054083568 @default.
- W3083653072 cites W2090258153 @default.
- W3083653072 cites W2102309308 @default.
- W3083653072 cites W2110892531 @default.
- W3083653072 cites W2133168389 @default.
- W3083653072 cites W2309832917 @default.
- W3083653072 cites W2553722054 @default.
- W3083653072 cites W2750652276 @default.
- W3083653072 cites W2756459354 @default.
- W3083653072 cites W2761349777 @default.
- W3083653072 cites W2782389313 @default.
- W3083653072 cites W4231712686 @default.
- W3083653072 cites W764535677 @default.
- W3083653072 doi "https://doi.org/10.1108/f-08-2019-0084" @default.
- W3083653072 hasPublicationYear "2020" @default.
- W3083653072 type Work @default.
- W3083653072 sameAs 3083653072 @default.
- W3083653072 citedByCount "5" @default.
- W3083653072 countsByYear W30836530722021 @default.
- W3083653072 countsByYear W30836530722022 @default.
- W3083653072 countsByYear W30836530722023 @default.
- W3083653072 crossrefType "journal-article" @default.
- W3083653072 hasAuthorship W3083653072A5039905531 @default.
- W3083653072 hasAuthorship W3083653072A5054772474 @default.
- W3083653072 hasConcept C119857082 @default.
- W3083653072 hasConcept C124101348 @default.
- W3083653072 hasConcept C127413603 @default.
- W3083653072 hasConcept C175309249 @default.
- W3083653072 hasConcept C199360897 @default.
- W3083653072 hasConcept C200601418 @default.
- W3083653072 hasConcept C26517878 @default.
- W3083653072 hasConcept C38652104 @default.
- W3083653072 hasConcept C41008148 @default.
- W3083653072 hasConcept C43521106 @default.
- W3083653072 hasConcept C45804977 @default.
- W3083653072 hasConcept C84525736 @default.
- W3083653072 hasConcept C87717796 @default.
- W3083653072 hasConceptScore W3083653072C119857082 @default.
- W3083653072 hasConceptScore W3083653072C124101348 @default.
- W3083653072 hasConceptScore W3083653072C127413603 @default.
- W3083653072 hasConceptScore W3083653072C175309249 @default.
- W3083653072 hasConceptScore W3083653072C199360897 @default.
- W3083653072 hasConceptScore W3083653072C200601418 @default.
- W3083653072 hasConceptScore W3083653072C26517878 @default.
- W3083653072 hasConceptScore W3083653072C38652104 @default.
- W3083653072 hasConceptScore W3083653072C41008148 @default.
- W3083653072 hasConceptScore W3083653072C43521106 @default.
- W3083653072 hasConceptScore W3083653072C45804977 @default.
- W3083653072 hasConceptScore W3083653072C84525736 @default.
- W3083653072 hasConceptScore W3083653072C87717796 @default.
- W3083653072 hasIssue "1/2" @default.
- W3083653072 hasLocation W30836530721 @default.
- W3083653072 hasOpenAccess W3083653072 @default.
- W3083653072 hasPrimaryLocation W30836530721 @default.
- W3083653072 hasRelatedWork W2350217990 @default.
- W3083653072 hasRelatedWork W2367598641 @default.
- W3083653072 hasRelatedWork W2386728981 @default.
- W3083653072 hasRelatedWork W2766232467 @default.
- W3083653072 hasRelatedWork W2793844736 @default.
- W3083653072 hasRelatedWork W2899084033 @default.
- W3083653072 hasRelatedWork W4297005838 @default.
- W3083653072 hasRelatedWork W4362495923 @default.
- W3083653072 hasRelatedWork W4380433113 @default.
- W3083653072 hasRelatedWork W4386072068 @default.
- W3083653072 hasVolume "39" @default.
- W3083653072 isParatext "false" @default.
- W3083653072 isRetracted "false" @default.
- W3083653072 magId "3083653072" @default.
- W3083653072 workType "article" @default.