Matches in SemOpenAlex for { <https://semopenalex.org/work/W3083657424> ?p ?o ?g. }
- W3083657424 endingPage "100250" @default.
- W3083657424 startingPage "100250" @default.
- W3083657424 abstract "Discrete choice analysis is a popular method of estimating heterogeneous customer preferences. Although model accuracy can be increased by including more choice data, this option is untenable when the obtaining of choice data from target customers is costly and time-consuming.. We thus propose a method for choice data generation for commercial products whose expected money value is a key factor in consumer choice (e.g., commercial vehicles and financial product). Using an individual usage scenario, we generate a discounted cash flow (DCF) model instead of a utility model to estimate the discount rates, rather than partworths, of individual consumers. The DCF model helps us generate synthetic choice data from choice sets consisting of various combinations of attribute levels. Using these data, we employ a hierarchical Bayesian (HB) discrete choice analysis. We conclude the study with a case study on the preference estimation of a hybrid courier truck conversion. The results reveal that the DCF-based HB estimation outperforms the traditional HB estimation." @default.
- W3083657424 created "2020-09-11" @default.
- W3083657424 creator A5004834009 @default.
- W3083657424 creator A5016809344 @default.
- W3083657424 creator A5036885716 @default.
- W3083657424 date "2020-12-01" @default.
- W3083657424 modified "2023-09-29" @default.
- W3083657424 title "Choice data generation using usage scenarios and discounted cash flow analysis" @default.
- W3083657424 cites W1505100786 @default.
- W3083657424 cites W1535098021 @default.
- W3083657424 cites W1590210216 @default.
- W3083657424 cites W1964535485 @default.
- W3083657424 cites W1978818332 @default.
- W3083657424 cites W1980378050 @default.
- W3083657424 cites W1981075779 @default.
- W3083657424 cites W1985220175 @default.
- W3083657424 cites W2001208895 @default.
- W3083657424 cites W2025957824 @default.
- W3083657424 cites W2032413526 @default.
- W3083657424 cites W2035263329 @default.
- W3083657424 cites W2035508307 @default.
- W3083657424 cites W2063401358 @default.
- W3083657424 cites W2064604759 @default.
- W3083657424 cites W2069753358 @default.
- W3083657424 cites W2078666525 @default.
- W3083657424 cites W2079122093 @default.
- W3083657424 cites W2084067126 @default.
- W3083657424 cites W2087923742 @default.
- W3083657424 cites W2096503632 @default.
- W3083657424 cites W2100303816 @default.
- W3083657424 cites W2106190758 @default.
- W3083657424 cites W2121619367 @default.
- W3083657424 cites W2121959576 @default.
- W3083657424 cites W2127201883 @default.
- W3083657424 cites W2131527177 @default.
- W3083657424 cites W2147440399 @default.
- W3083657424 cites W2155907120 @default.
- W3083657424 cites W2160182009 @default.
- W3083657424 cites W2169371858 @default.
- W3083657424 cites W2272326785 @default.
- W3083657424 cites W2330649226 @default.
- W3083657424 cites W2346874961 @default.
- W3083657424 cites W2611449603 @default.
- W3083657424 cites W2792539455 @default.
- W3083657424 cites W2811384039 @default.
- W3083657424 cites W2920746324 @default.
- W3083657424 cites W2930717156 @default.
- W3083657424 cites W2947005835 @default.
- W3083657424 cites W2966811417 @default.
- W3083657424 cites W3121544734 @default.
- W3083657424 cites W4244632575 @default.
- W3083657424 cites W4250315842 @default.
- W3083657424 cites W4255504589 @default.
- W3083657424 doi "https://doi.org/10.1016/j.jocm.2020.100250" @default.
- W3083657424 hasPublicationYear "2020" @default.
- W3083657424 type Work @default.
- W3083657424 sameAs 3083657424 @default.
- W3083657424 citedByCount "2" @default.
- W3083657424 countsByYear W30836574242022 @default.
- W3083657424 countsByYear W30836574242023 @default.
- W3083657424 crossrefType "journal-article" @default.
- W3083657424 hasAuthorship W3083657424A5004834009 @default.
- W3083657424 hasAuthorship W3083657424A5016809344 @default.
- W3083657424 hasAuthorship W3083657424A5036885716 @default.
- W3083657424 hasConcept C10138342 @default.
- W3083657424 hasConcept C107673813 @default.
- W3083657424 hasConcept C119857082 @default.
- W3083657424 hasConcept C149782125 @default.
- W3083657424 hasConcept C154945302 @default.
- W3083657424 hasConcept C162324750 @default.
- W3083657424 hasConcept C163428354 @default.
- W3083657424 hasConcept C175444787 @default.
- W3083657424 hasConcept C190669063 @default.
- W3083657424 hasConcept C2776314989 @default.
- W3083657424 hasConcept C2779110102 @default.
- W3083657424 hasConcept C2781014177 @default.
- W3083657424 hasConcept C2781249084 @default.
- W3083657424 hasConcept C41008148 @default.
- W3083657424 hasConceptScore W3083657424C10138342 @default.
- W3083657424 hasConceptScore W3083657424C107673813 @default.
- W3083657424 hasConceptScore W3083657424C119857082 @default.
- W3083657424 hasConceptScore W3083657424C149782125 @default.
- W3083657424 hasConceptScore W3083657424C154945302 @default.
- W3083657424 hasConceptScore W3083657424C162324750 @default.
- W3083657424 hasConceptScore W3083657424C163428354 @default.
- W3083657424 hasConceptScore W3083657424C175444787 @default.
- W3083657424 hasConceptScore W3083657424C190669063 @default.
- W3083657424 hasConceptScore W3083657424C2776314989 @default.
- W3083657424 hasConceptScore W3083657424C2779110102 @default.
- W3083657424 hasConceptScore W3083657424C2781014177 @default.
- W3083657424 hasConceptScore W3083657424C2781249084 @default.
- W3083657424 hasConceptScore W3083657424C41008148 @default.
- W3083657424 hasFunder F4320322010 @default.
- W3083657424 hasFunder F4320322120 @default.
- W3083657424 hasLocation W30836574241 @default.
- W3083657424 hasOpenAccess W3083657424 @default.
- W3083657424 hasPrimaryLocation W30836574241 @default.
- W3083657424 hasRelatedWork W1510377764 @default.