Matches in SemOpenAlex for { <https://semopenalex.org/work/W3083753596> ?p ?o ?g. }
Showing items 1 to 45 of
45
with 100 items per page.
- W3083753596 abstract "In the road traffic space which is often encountered by passing traffic type of vehicle. To find out the traffic conditions that are needed to calculate vehicle traffic, such as using counting or recording CCTV video. This continues the long and long process that was completed on the error data and the slow pace of traffic engineering decisions. This method is difficult to do in full because of the limited number of counters. This can be done by involving digital processing and CCTV video to be able to classify and transfer vehicle type objects. There are several methods for sharing object imagery, such as SIFT, edge detection and Monte Carlo. This research tries to use the Background Substraction and Blob Detection methods because of its superiority in determining objects and backgrounds and being able to maintain moving objects as well as analyzing screen area calculations. The results of testing with this method obtained the MSE value at the threshold of 100 and 3x3 kernel filter with a pixel area of motorcycle 34-63 pixel-X, 67-155 pixel-Y and cars 73-200 pixel-X, 79-307 pixel-Y and bus / truck 130-128 pixel-X, 305-376 pixel-Y. On evaluation, use the confusion matrix obtained in the morning with an average total of 92% and at night with a total average of 73%. It can be concluded by using CCTV installation parameters and the method used can yields higher accuracy in the morning than at night with the weakness of compiling objects that can make it easier to make objects and test the night to obtain light from vehicle lights generated as vehicle objects the flight." @default.
- W3083753596 created "2020-09-11" @default.
- W3083753596 creator A5020646538 @default.
- W3083753596 creator A5070931514 @default.
- W3083753596 date "2020-08-21" @default.
- W3083753596 modified "2023-10-17" @default.
- W3083753596 title "Penghitungan Objek Berdasarkan Berdasarkan Jenis Kendaraan Bermotor pada CCTV Lalu Lintas Berbasis Pengolahan Citra Digital Menggunakan Metode Background Subtraction dan Blob Detection" @default.
- W3083753596 doi "https://doi.org/10.35746/jtim.v2i2.98" @default.
- W3083753596 hasPublicationYear "2020" @default.
- W3083753596 type Work @default.
- W3083753596 sameAs 3083753596 @default.
- W3083753596 citedByCount "0" @default.
- W3083753596 crossrefType "journal-article" @default.
- W3083753596 hasAuthorship W3083753596A5020646538 @default.
- W3083753596 hasAuthorship W3083753596A5070931514 @default.
- W3083753596 hasBestOaLocation W30837535961 @default.
- W3083753596 hasConcept C121684516 @default.
- W3083753596 hasConcept C154945302 @default.
- W3083753596 hasConcept C160633673 @default.
- W3083753596 hasConcept C31972630 @default.
- W3083753596 hasConcept C32653426 @default.
- W3083753596 hasConcept C41008148 @default.
- W3083753596 hasConceptScore W3083753596C121684516 @default.
- W3083753596 hasConceptScore W3083753596C154945302 @default.
- W3083753596 hasConceptScore W3083753596C160633673 @default.
- W3083753596 hasConceptScore W3083753596C31972630 @default.
- W3083753596 hasConceptScore W3083753596C32653426 @default.
- W3083753596 hasConceptScore W3083753596C41008148 @default.
- W3083753596 hasLocation W30837535961 @default.
- W3083753596 hasOpenAccess W3083753596 @default.
- W3083753596 hasPrimaryLocation W30837535961 @default.
- W3083753596 hasRelatedWork W10093668 @default.
- W3083753596 hasRelatedWork W10097266 @default.
- W3083753596 hasRelatedWork W10362453 @default.
- W3083753596 hasRelatedWork W12741622 @default.
- W3083753596 hasRelatedWork W7649451 @default.
- W3083753596 hasRelatedWork W795352 @default.
- W3083753596 hasRelatedWork W8880257 @default.
- W3083753596 hasRelatedWork W92798 @default.
- W3083753596 hasRelatedWork W9820523 @default.
- W3083753596 hasRelatedWork W3000238 @default.
- W3083753596 isParatext "false" @default.
- W3083753596 isRetracted "false" @default.
- W3083753596 magId "3083753596" @default.
- W3083753596 workType "article" @default.