Matches in SemOpenAlex for { <https://semopenalex.org/work/W3083755038> ?p ?o ?g. }
- W3083755038 endingPage "142193" @default.
- W3083755038 startingPage "142193" @default.
- W3083755038 abstract "Drinking water governance is challenging with different perceptions and priorities among stakeholders in different countries. To make provision for drinking water protection in agricultural areas, governance systems need to be mapped for bottlenecks to be identified and solutions highlighted. To address this a system thinking approach was used in an explanatory network analysis of Fuzzy Cognitive Maps (FCM) that were created during face to face interviews with stakeholder representative groups (individuals, policy developers, researchers, and regulators). Two exercises were designed and facilitated to obtain stakeholder maps on A) the water governance framework from stakeholders' own perspective with a ranking of actors in terms of their perceived importance and B) a list of importance factors and how these were connected for the provision of good drinking water quality supplies in agricultural areas. Causal relationships were subsequently drawn around each subject allowing mapping. A graph theory Hierarchy Index (h) approach examined if stakeholder groups preferred top down hierarchical governance or a more inclusive democratic governance approach. Finally, an auto-associative neural network method was deployed on group maps for examination during steady-state conditions for three scenarios to be explored i.e. changing Farmers knowledge, best management practice (BMP) uptake and Farmers behaviour and belief to the highest level of influence and seeing how the system reacted. Results of Exercise A showed that all stakeholder representative groups had a different perception of the water governance framework. Most stakeholder groups had a democratic point of view regarding water governance structures and the ranking and importance of the actors within the framework. Results of Exercise B demonstrated that most of the groups have similar opinions regarding the highest ranked factors affecting drinking water quality and the possible environmental ecological policy options. In this second exercise, only one representative group showed a democratic outlook whereas all others had a hierarchal outlook. Scenario testing of policy options enabled bottlenecks and possible solutions to be identified. By boosting Farmers behaviour and belief to the highest possible level, resulted in a large increase in other factors - a scenario where farmers could benefit from the outcome. This would be achieved by enhancing farmers' willingness and intention to participate and implement BMPs. Better results would be achieved if farmers believed in the method and could benefit from the outcome. Also keeping Farmers knowledge at the highest point had a positive influence on the other factors. This can be achieved by enhancing farmers training and knowledge transfer by local and national actors. This method is widely applicable and should be considered for more integrated and participatory approaches to drinking water governance." @default.
- W3083755038 created "2020-09-11" @default.
- W3083755038 creator A5040740682 @default.
- W3083755038 creator A5069374267 @default.
- W3083755038 creator A5075143157 @default.
- W3083755038 creator A5076424719 @default.
- W3083755038 date "2021-01-01" @default.
- W3083755038 modified "2023-10-02" @default.
- W3083755038 title "A Fuzzy Cognitive Map method for integrated and participatory water governance and indicators affecting drinking water supplies" @default.
- W3083755038 cites W1551663471 @default.
- W3083755038 cites W1965431236 @default.
- W3083755038 cites W1969572901 @default.
- W3083755038 cites W1984743595 @default.
- W3083755038 cites W1991136949 @default.
- W3083755038 cites W1993711368 @default.
- W3083755038 cites W1995673160 @default.
- W3083755038 cites W2001588079 @default.
- W3083755038 cites W2006712505 @default.
- W3083755038 cites W2008031488 @default.
- W3083755038 cites W2024958585 @default.
- W3083755038 cites W2025608118 @default.
- W3083755038 cites W2028695285 @default.
- W3083755038 cites W2033012397 @default.
- W3083755038 cites W2050847486 @default.
- W3083755038 cites W2088339630 @default.
- W3083755038 cites W2090715064 @default.
- W3083755038 cites W2095057751 @default.
- W3083755038 cites W2095224843 @default.
- W3083755038 cites W2097821297 @default.
- W3083755038 cites W2098983012 @default.
- W3083755038 cites W2101873753 @default.
- W3083755038 cites W2118837440 @default.
- W3083755038 cites W2127470579 @default.
- W3083755038 cites W2151794151 @default.
- W3083755038 cites W2158211637 @default.
- W3083755038 cites W2219940921 @default.
- W3083755038 cites W2308641120 @default.
- W3083755038 cites W2339764516 @default.
- W3083755038 cites W2395747823 @default.
- W3083755038 cites W2401872496 @default.
- W3083755038 cites W2477330071 @default.
- W3083755038 cites W2560399496 @default.
- W3083755038 cites W2581414770 @default.
- W3083755038 cites W260015587 @default.
- W3083755038 cites W2771860032 @default.
- W3083755038 cites W2789605005 @default.
- W3083755038 cites W2804053812 @default.
- W3083755038 cites W2807820944 @default.
- W3083755038 cites W2884261880 @default.
- W3083755038 cites W2888142258 @default.
- W3083755038 cites W2899147568 @default.
- W3083755038 cites W2899422402 @default.
- W3083755038 cites W2945250875 @default.
- W3083755038 cites W2971151117 @default.
- W3083755038 cites W2978343555 @default.
- W3083755038 cites W3012093904 @default.
- W3083755038 cites W3013148687 @default.
- W3083755038 cites W61562365 @default.
- W3083755038 doi "https://doi.org/10.1016/j.scitotenv.2020.142193" @default.
- W3083755038 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33182184" @default.
- W3083755038 hasPublicationYear "2021" @default.
- W3083755038 type Work @default.
- W3083755038 sameAs 3083755038 @default.
- W3083755038 citedByCount "13" @default.
- W3083755038 countsByYear W30837550382021 @default.
- W3083755038 countsByYear W30837550382022 @default.
- W3083755038 countsByYear W30837550382023 @default.
- W3083755038 crossrefType "journal-article" @default.
- W3083755038 hasAuthorship W3083755038A5040740682 @default.
- W3083755038 hasAuthorship W3083755038A5069374267 @default.
- W3083755038 hasAuthorship W3083755038A5075143157 @default.
- W3083755038 hasAuthorship W3083755038A5076424719 @default.
- W3083755038 hasBestOaLocation W30837550382 @default.
- W3083755038 hasConcept C10138342 @default.
- W3083755038 hasConcept C107826830 @default.
- W3083755038 hasConcept C134560507 @default.
- W3083755038 hasConcept C144133560 @default.
- W3083755038 hasConcept C154945302 @default.
- W3083755038 hasConcept C162324750 @default.
- W3083755038 hasConcept C17744445 @default.
- W3083755038 hasConcept C1883856 @default.
- W3083755038 hasConcept C195094911 @default.
- W3083755038 hasConcept C201305675 @default.
- W3083755038 hasConcept C39389867 @default.
- W3083755038 hasConcept C39549134 @default.
- W3083755038 hasConcept C41008148 @default.
- W3083755038 hasConcept C42011625 @default.
- W3083755038 hasConcept C5041914 @default.
- W3083755038 hasConcept C56739046 @default.
- W3083755038 hasConcept C58166 @default.
- W3083755038 hasConceptScore W3083755038C10138342 @default.
- W3083755038 hasConceptScore W3083755038C107826830 @default.
- W3083755038 hasConceptScore W3083755038C134560507 @default.
- W3083755038 hasConceptScore W3083755038C144133560 @default.
- W3083755038 hasConceptScore W3083755038C154945302 @default.
- W3083755038 hasConceptScore W3083755038C162324750 @default.
- W3083755038 hasConceptScore W3083755038C17744445 @default.
- W3083755038 hasConceptScore W3083755038C1883856 @default.