Matches in SemOpenAlex for { <https://semopenalex.org/work/W3083863102> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3083863102 abstract "With the growth and wide variety of available data, advanced processing, and affordable data storage, machine learning is witnessing great attention in finding optimized solutions in various fields. Machine learning techniques are currently taking a major part of the ongoing research, and expected to be the key player in today's technologies. This paper introduces and investigates the applications of machine learning in antenna design. It covers the major aspects of machine learning, including its basic concept, differentiation with artificial intelligence and deep learning, learning algorithms, its wide applications in various technologies, with a main focus on its usage in antenna design. The review also includes a comparison of the results using machine learning in antenna design, compared to the conventional design methods." @default.
- W3083863102 created "2020-09-14" @default.
- W3083863102 creator A5037533418 @default.
- W3083863102 creator A5048533685 @default.
- W3083863102 date "2019-07-01" @default.
- W3083863102 modified "2023-10-16" @default.
- W3083863102 title "Machine Learning in Antenna Design: An Overview on Machine Learning Concept and Algorithms" @default.
- W3083863102 cites W1966154590 @default.
- W3083863102 cites W1967608079 @default.
- W3083863102 cites W1970074386 @default.
- W3083863102 cites W1975812101 @default.
- W3083863102 cites W1992205553 @default.
- W3083863102 cites W2054234475 @default.
- W3083863102 cites W2068849277 @default.
- W3083863102 cites W2086349765 @default.
- W3083863102 cites W2100098163 @default.
- W3083863102 cites W2105416377 @default.
- W3083863102 cites W2139475137 @default.
- W3083863102 cites W2143001780 @default.
- W3083863102 cites W2150295936 @default.
- W3083863102 cites W2156377537 @default.
- W3083863102 cites W2166908610 @default.
- W3083863102 cites W2167025781 @default.
- W3083863102 cites W2310393850 @default.
- W3083863102 cites W2477563955 @default.
- W3083863102 cites W2558537138 @default.
- W3083863102 cites W2607143551 @default.
- W3083863102 cites W2620570971 @default.
- W3083863102 cites W2620794583 @default.
- W3083863102 cites W2734973758 @default.
- W3083863102 cites W2870836473 @default.
- W3083863102 cites W2883849272 @default.
- W3083863102 cites W2889941140 @default.
- W3083863102 cites W2902396990 @default.
- W3083863102 cites W2915097532 @default.
- W3083863102 cites W4234008455 @default.
- W3083863102 cites W4236362309 @default.
- W3083863102 cites W4248437541 @default.
- W3083863102 cites W4251817184 @default.
- W3083863102 doi "https://doi.org/10.1109/hpcs48598.2019.9188224" @default.
- W3083863102 hasPublicationYear "2019" @default.
- W3083863102 type Work @default.
- W3083863102 sameAs 3083863102 @default.
- W3083863102 citedByCount "33" @default.
- W3083863102 countsByYear W30838631022020 @default.
- W3083863102 countsByYear W30838631022021 @default.
- W3083863102 countsByYear W30838631022022 @default.
- W3083863102 countsByYear W30838631022023 @default.
- W3083863102 crossrefType "proceedings-article" @default.
- W3083863102 hasAuthorship W3083863102A5037533418 @default.
- W3083863102 hasAuthorship W3083863102A5048533685 @default.
- W3083863102 hasConcept C11413529 @default.
- W3083863102 hasConcept C117270229 @default.
- W3083863102 hasConcept C119857082 @default.
- W3083863102 hasConcept C136197465 @default.
- W3083863102 hasConcept C154945302 @default.
- W3083863102 hasConcept C188888258 @default.
- W3083863102 hasConcept C19966478 @default.
- W3083863102 hasConcept C26517878 @default.
- W3083863102 hasConcept C38652104 @default.
- W3083863102 hasConcept C41008148 @default.
- W3083863102 hasConcept C50292564 @default.
- W3083863102 hasConcept C8038995 @default.
- W3083863102 hasConcept C90509273 @default.
- W3083863102 hasConceptScore W3083863102C11413529 @default.
- W3083863102 hasConceptScore W3083863102C117270229 @default.
- W3083863102 hasConceptScore W3083863102C119857082 @default.
- W3083863102 hasConceptScore W3083863102C136197465 @default.
- W3083863102 hasConceptScore W3083863102C154945302 @default.
- W3083863102 hasConceptScore W3083863102C188888258 @default.
- W3083863102 hasConceptScore W3083863102C19966478 @default.
- W3083863102 hasConceptScore W3083863102C26517878 @default.
- W3083863102 hasConceptScore W3083863102C38652104 @default.
- W3083863102 hasConceptScore W3083863102C41008148 @default.
- W3083863102 hasConceptScore W3083863102C50292564 @default.
- W3083863102 hasConceptScore W3083863102C8038995 @default.
- W3083863102 hasConceptScore W3083863102C90509273 @default.
- W3083863102 hasLocation W30838631021 @default.
- W3083863102 hasOpenAccess W3083863102 @default.
- W3083863102 hasPrimaryLocation W30838631021 @default.
- W3083863102 hasRelatedWork W2977791234 @default.
- W3083863102 hasRelatedWork W3046775127 @default.
- W3083863102 hasRelatedWork W3136151706 @default.
- W3083863102 hasRelatedWork W3196155444 @default.
- W3083863102 hasRelatedWork W3209574120 @default.
- W3083863102 hasRelatedWork W4306321456 @default.
- W3083863102 hasRelatedWork W4319309271 @default.
- W3083863102 hasRelatedWork W4320063314 @default.
- W3083863102 hasRelatedWork W4321844043 @default.
- W3083863102 hasRelatedWork W4386462264 @default.
- W3083863102 isParatext "false" @default.
- W3083863102 isRetracted "false" @default.
- W3083863102 magId "3083863102" @default.
- W3083863102 workType "article" @default.