Matches in SemOpenAlex for { <https://semopenalex.org/work/W3083906242> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3083906242 abstract "We review literature in top journals and conferences on the usage of deep learning for medical image analysis in modern healthcare. As a result it is shown that deep learning offers unique capabilities and breakthroughs in identifying, classifying and segmenting different kinds of medical images, especially related to cancer in the breast, lung, and brain." @default.
- W3083906242 created "2020-09-14" @default.
- W3083906242 creator A5043467062 @default.
- W3083906242 creator A5047778151 @default.
- W3083906242 creator A5051576488 @default.
- W3083906242 creator A5052190238 @default.
- W3083906242 date "2020-07-01" @default.
- W3083906242 modified "2023-10-12" @default.
- W3083906242 title "A Systematic Literature Review of Medical Image Analysis Using Deep Learning" @default.
- W3083906242 cites W2107526704 @default.
- W3083906242 cites W2125458520 @default.
- W3083906242 cites W2129141530 @default.
- W3083906242 cites W2148282693 @default.
- W3083906242 cites W2156580293 @default.
- W3083906242 cites W2164498148 @default.
- W3083906242 cites W2166346010 @default.
- W3083906242 cites W2293685957 @default.
- W3083906242 cites W2323929895 @default.
- W3083906242 cites W2478254599 @default.
- W3083906242 cites W2594505750 @default.
- W3083906242 cites W2692087510 @default.
- W3083906242 cites W2754671235 @default.
- W3083906242 cites W2765669952 @default.
- W3083906242 cites W2769541277 @default.
- W3083906242 cites W2785359448 @default.
- W3083906242 cites W2789985518 @default.
- W3083906242 cites W2794941428 @default.
- W3083906242 cites W2888570268 @default.
- W3083906242 cites W2893691907 @default.
- W3083906242 cites W2899683012 @default.
- W3083906242 cites W2905065426 @default.
- W3083906242 cites W2909222944 @default.
- W3083906242 cites W2909778238 @default.
- W3083906242 cites W2933939325 @default.
- W3083906242 cites W2941631060 @default.
- W3083906242 cites W2944905847 @default.
- W3083906242 cites W2946185430 @default.
- W3083906242 cites W2946431915 @default.
- W3083906242 cites W2955181859 @default.
- W3083906242 cites W2972786609 @default.
- W3083906242 cites W2973444803 @default.
- W3083906242 cites W2975129688 @default.
- W3083906242 cites W2978981352 @default.
- W3083906242 cites W4235193395 @default.
- W3083906242 doi "https://doi.org/10.1109/isiea49364.2020.9188131" @default.
- W3083906242 hasPublicationYear "2020" @default.
- W3083906242 type Work @default.
- W3083906242 sameAs 3083906242 @default.
- W3083906242 citedByCount "9" @default.
- W3083906242 countsByYear W30839062422021 @default.
- W3083906242 countsByYear W30839062422022 @default.
- W3083906242 countsByYear W30839062422023 @default.
- W3083906242 crossrefType "proceedings-article" @default.
- W3083906242 hasAuthorship W3083906242A5043467062 @default.
- W3083906242 hasAuthorship W3083906242A5047778151 @default.
- W3083906242 hasAuthorship W3083906242A5051576488 @default.
- W3083906242 hasAuthorship W3083906242A5052190238 @default.
- W3083906242 hasConcept C108583219 @default.
- W3083906242 hasConcept C115961682 @default.
- W3083906242 hasConcept C124504099 @default.
- W3083906242 hasConcept C142724271 @default.
- W3083906242 hasConcept C154945302 @default.
- W3083906242 hasConcept C160735492 @default.
- W3083906242 hasConcept C162324750 @default.
- W3083906242 hasConcept C2522767166 @default.
- W3083906242 hasConcept C2779231881 @default.
- W3083906242 hasConcept C41008148 @default.
- W3083906242 hasConcept C50522688 @default.
- W3083906242 hasConcept C71924100 @default.
- W3083906242 hasConceptScore W3083906242C108583219 @default.
- W3083906242 hasConceptScore W3083906242C115961682 @default.
- W3083906242 hasConceptScore W3083906242C124504099 @default.
- W3083906242 hasConceptScore W3083906242C142724271 @default.
- W3083906242 hasConceptScore W3083906242C154945302 @default.
- W3083906242 hasConceptScore W3083906242C160735492 @default.
- W3083906242 hasConceptScore W3083906242C162324750 @default.
- W3083906242 hasConceptScore W3083906242C2522767166 @default.
- W3083906242 hasConceptScore W3083906242C2779231881 @default.
- W3083906242 hasConceptScore W3083906242C41008148 @default.
- W3083906242 hasConceptScore W3083906242C50522688 @default.
- W3083906242 hasConceptScore W3083906242C71924100 @default.
- W3083906242 hasLocation W30839062421 @default.
- W3083906242 hasOpenAccess W3083906242 @default.
- W3083906242 hasPrimaryLocation W30839062421 @default.
- W3083906242 hasRelatedWork W2611989081 @default.
- W3083906242 hasRelatedWork W2731899572 @default.
- W3083906242 hasRelatedWork W2802049774 @default.
- W3083906242 hasRelatedWork W3215138031 @default.
- W3083906242 hasRelatedWork W4230611425 @default.
- W3083906242 hasRelatedWork W4294635752 @default.
- W3083906242 hasRelatedWork W4304166257 @default.
- W3083906242 hasRelatedWork W4327774331 @default.
- W3083906242 hasRelatedWork W4375867731 @default.
- W3083906242 hasRelatedWork W4383066092 @default.
- W3083906242 isParatext "false" @default.
- W3083906242 isRetracted "false" @default.
- W3083906242 magId "3083906242" @default.
- W3083906242 workType "article" @default.