Matches in SemOpenAlex for { <https://semopenalex.org/work/W3083961251> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3083961251 endingPage "113986" @default.
- W3083961251 startingPage "113986" @default.
- W3083961251 abstract "Abstract Credit risk assessment plays a key role for correctly supporting financial institutes in defining their bank policies and commercial strategies. Over the last decade, the emerging of social lending platforms has disrupted traditional services for credit risk assessment. Through these platforms, lenders and borrowers can easily interact among them without any involvement of financial institutes. In particular, they support borrowers in the fundraising process, enabling the participation of any number and size of lenders. However, the lack of lenders’ experience and missing or uncertain information about borrower’s credit history can increase risks in social lending platforms, requiring an accurate credit risk scoring. To overcome such issues, the credit risk assessment problem of financial operations is usually modeled as a binary problem on the basis of debt’s repayment and proper machine learning techniques can be consequently exploited. In this paper, we propose a benchmarking study of some of the most used credit risk scoring models to predict if a loan will be repaid in a P2P platform. We deal with a class imbalance problem and leverage several classifiers among the most used in the literature, which are based on different sampling techniques. A real social lending platform (Lending Club) data-set, composed by 877,956 samples, has been used to perform the experimental analysis considering different evaluation metrics (i.e. AUC, Sensitivity, Specificity), also comparing the obtained outcomes with respect to the state-of-the-art approaches. Finally, the three best approaches have also been evaluated in terms of their explainability by means of different eXplainable Artificial Intelligence (XAI) tools." @default.
- W3083961251 created "2020-09-14" @default.
- W3083961251 creator A5067863367 @default.
- W3083961251 creator A5080190737 @default.
- W3083961251 creator A5081965427 @default.
- W3083961251 date "2021-03-01" @default.
- W3083961251 modified "2023-10-18" @default.
- W3083961251 title "A benchmark of machine learning approaches for credit score prediction" @default.
- W3083961251 cites W1963607983 @default.
- W3083961251 cites W1973982793 @default.
- W3083961251 cites W1977009091 @default.
- W3083961251 cites W1991383297 @default.
- W3083961251 cites W2026905436 @default.
- W3083961251 cites W2035244987 @default.
- W3083961251 cites W2043956603 @default.
- W3083961251 cites W2051731935 @default.
- W3083961251 cites W2071193822 @default.
- W3083961251 cites W2078897006 @default.
- W3083961251 cites W2162397980 @default.
- W3083961251 cites W2282821441 @default.
- W3083961251 cites W2296034778 @default.
- W3083961251 cites W2345587950 @default.
- W3083961251 cites W2515179890 @default.
- W3083961251 cites W2562923621 @default.
- W3083961251 cites W2728161880 @default.
- W3083961251 cites W2761075141 @default.
- W3083961251 cites W2761700016 @default.
- W3083961251 cites W2775806999 @default.
- W3083961251 cites W2793304295 @default.
- W3083961251 cites W2891503716 @default.
- W3083961251 cites W2898153843 @default.
- W3083961251 cites W2912543642 @default.
- W3083961251 cites W2920873626 @default.
- W3083961251 cites W2921451329 @default.
- W3083961251 cites W2922729654 @default.
- W3083961251 cites W2962772482 @default.
- W3083961251 cites W2963186039 @default.
- W3083961251 cites W3010882522 @default.
- W3083961251 cites W430137803 @default.
- W3083961251 cites W973036012 @default.
- W3083961251 doi "https://doi.org/10.1016/j.eswa.2020.113986" @default.
- W3083961251 hasPublicationYear "2021" @default.
- W3083961251 type Work @default.
- W3083961251 sameAs 3083961251 @default.
- W3083961251 citedByCount "79" @default.
- W3083961251 countsByYear W30839612512020 @default.
- W3083961251 countsByYear W30839612512021 @default.
- W3083961251 countsByYear W30839612512022 @default.
- W3083961251 countsByYear W30839612512023 @default.
- W3083961251 crossrefType "journal-article" @default.
- W3083961251 hasAuthorship W3083961251A5067863367 @default.
- W3083961251 hasAuthorship W3083961251A5080190737 @default.
- W3083961251 hasAuthorship W3083961251A5081965427 @default.
- W3083961251 hasConcept C119857082 @default.
- W3083961251 hasConcept C13280743 @default.
- W3083961251 hasConcept C154945302 @default.
- W3083961251 hasConcept C185798385 @default.
- W3083961251 hasConcept C205649164 @default.
- W3083961251 hasConcept C41008148 @default.
- W3083961251 hasConceptScore W3083961251C119857082 @default.
- W3083961251 hasConceptScore W3083961251C13280743 @default.
- W3083961251 hasConceptScore W3083961251C154945302 @default.
- W3083961251 hasConceptScore W3083961251C185798385 @default.
- W3083961251 hasConceptScore W3083961251C205649164 @default.
- W3083961251 hasConceptScore W3083961251C41008148 @default.
- W3083961251 hasLocation W30839612511 @default.
- W3083961251 hasOpenAccess W3083961251 @default.
- W3083961251 hasPrimaryLocation W30839612511 @default.
- W3083961251 hasRelatedWork W112744582 @default.
- W3083961251 hasRelatedWork W1485630101 @default.
- W3083961251 hasRelatedWork W172869079 @default.
- W3083961251 hasRelatedWork W2030059621 @default.
- W3083961251 hasRelatedWork W2498017833 @default.
- W3083961251 hasRelatedWork W2961085424 @default.
- W3083961251 hasRelatedWork W4286629047 @default.
- W3083961251 hasRelatedWork W4306321456 @default.
- W3083961251 hasRelatedWork W4306674287 @default.
- W3083961251 hasRelatedWork W4224009465 @default.
- W3083961251 hasVolume "165" @default.
- W3083961251 isParatext "false" @default.
- W3083961251 isRetracted "false" @default.
- W3083961251 magId "3083961251" @default.
- W3083961251 workType "article" @default.