Matches in SemOpenAlex for { <https://semopenalex.org/work/W3083988280> ?p ?o ?g. }
- W3083988280 endingPage "5107" @default.
- W3083988280 startingPage "5107" @default.
- W3083988280 abstract "Internet of things (IoT) systems generate a large volume of data all the time. How to choose and transfer which data are essential for decision-making is a challenge. This is especially important for low-cost and low-power designs, for example Long-Range Wide-Area Network (LoRaWan)-based IoT systems, where data volume and frequency are constrained by the protocols. This paper presents an unsupervised learning approach using Laplacian scores to discover which types of sensors can be reduced, without compromising the decision-making. Here, a type of sensor is a feature. An IoT system is designed and implemented for a plant-monitoring scenario. We have collected data and carried out the Laplacian scores. The analytical results help choose the most important feature. A comparative study has shown that using fewer types of sensors, the accuracy of decision-making remains at a satisfactory level." @default.
- W3083988280 created "2020-09-14" @default.
- W3083988280 creator A5022524176 @default.
- W3083988280 creator A5051917874 @default.
- W3083988280 creator A5080650523 @default.
- W3083988280 creator A5084774471 @default.
- W3083988280 date "2020-09-08" @default.
- W3083988280 modified "2023-09-26" @default.
- W3083988280 title "Laplacian Scores-Based Feature Reduction in IoT Systems for Agricultural Monitoring and Decision-Making Support" @default.
- W3083988280 cites W1966809779 @default.
- W3083988280 cites W2021973007 @default.
- W3083988280 cites W2058033677 @default.
- W3083988280 cites W2096776111 @default.
- W3083988280 cites W2209508536 @default.
- W3083988280 cites W2322496432 @default.
- W3083988280 cites W2557450880 @default.
- W3083988280 cites W2581572661 @default.
- W3083988280 cites W2616854319 @default.
- W3083988280 cites W2624522891 @default.
- W3083988280 cites W2742840809 @default.
- W3083988280 cites W2766904551 @default.
- W3083988280 cites W2784039032 @default.
- W3083988280 cites W2790698126 @default.
- W3083988280 cites W2804941726 @default.
- W3083988280 cites W2887527983 @default.
- W3083988280 cites W2940939841 @default.
- W3083988280 cites W2969750416 @default.
- W3083988280 cites W2997174373 @default.
- W3083988280 cites W3122864121 @default.
- W3083988280 cites W4248375863 @default.
- W3083988280 doi "https://doi.org/10.3390/s20185107" @default.
- W3083988280 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7570761" @default.
- W3083988280 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32911684" @default.
- W3083988280 hasPublicationYear "2020" @default.
- W3083988280 type Work @default.
- W3083988280 sameAs 3083988280 @default.
- W3083988280 citedByCount "4" @default.
- W3083988280 countsByYear W30839882802020 @default.
- W3083988280 countsByYear W30839882802022 @default.
- W3083988280 countsByYear W30839882802023 @default.
- W3083988280 crossrefType "journal-article" @default.
- W3083988280 hasAuthorship W3083988280A5022524176 @default.
- W3083988280 hasAuthorship W3083988280A5051917874 @default.
- W3083988280 hasAuthorship W3083988280A5080650523 @default.
- W3083988280 hasAuthorship W3083988280A5084774471 @default.
- W3083988280 hasBestOaLocation W30839882801 @default.
- W3083988280 hasConcept C111335779 @default.
- W3083988280 hasConcept C119857082 @default.
- W3083988280 hasConcept C121332964 @default.
- W3083988280 hasConcept C124101348 @default.
- W3083988280 hasConcept C127413603 @default.
- W3083988280 hasConcept C138885662 @default.
- W3083988280 hasConcept C146978453 @default.
- W3083988280 hasConcept C149635348 @default.
- W3083988280 hasConcept C154945302 @default.
- W3083988280 hasConcept C204323151 @default.
- W3083988280 hasConcept C20556612 @default.
- W3083988280 hasConcept C24590314 @default.
- W3083988280 hasConcept C2524010 @default.
- W3083988280 hasConcept C2776401178 @default.
- W3083988280 hasConcept C31258907 @default.
- W3083988280 hasConcept C33923547 @default.
- W3083988280 hasConcept C41008148 @default.
- W3083988280 hasConcept C41895202 @default.
- W3083988280 hasConcept C62520636 @default.
- W3083988280 hasConcept C79403827 @default.
- W3083988280 hasConcept C81860439 @default.
- W3083988280 hasConceptScore W3083988280C111335779 @default.
- W3083988280 hasConceptScore W3083988280C119857082 @default.
- W3083988280 hasConceptScore W3083988280C121332964 @default.
- W3083988280 hasConceptScore W3083988280C124101348 @default.
- W3083988280 hasConceptScore W3083988280C127413603 @default.
- W3083988280 hasConceptScore W3083988280C138885662 @default.
- W3083988280 hasConceptScore W3083988280C146978453 @default.
- W3083988280 hasConceptScore W3083988280C149635348 @default.
- W3083988280 hasConceptScore W3083988280C154945302 @default.
- W3083988280 hasConceptScore W3083988280C204323151 @default.
- W3083988280 hasConceptScore W3083988280C20556612 @default.
- W3083988280 hasConceptScore W3083988280C24590314 @default.
- W3083988280 hasConceptScore W3083988280C2524010 @default.
- W3083988280 hasConceptScore W3083988280C2776401178 @default.
- W3083988280 hasConceptScore W3083988280C31258907 @default.
- W3083988280 hasConceptScore W3083988280C33923547 @default.
- W3083988280 hasConceptScore W3083988280C41008148 @default.
- W3083988280 hasConceptScore W3083988280C41895202 @default.
- W3083988280 hasConceptScore W3083988280C62520636 @default.
- W3083988280 hasConceptScore W3083988280C79403827 @default.
- W3083988280 hasConceptScore W3083988280C81860439 @default.
- W3083988280 hasFunder F4320334631 @default.
- W3083988280 hasIssue "18" @default.
- W3083988280 hasLocation W30839882801 @default.
- W3083988280 hasLocation W30839882802 @default.
- W3083988280 hasLocation W30839882803 @default.
- W3083988280 hasLocation W30839882804 @default.
- W3083988280 hasLocation W30839882805 @default.
- W3083988280 hasOpenAccess W3083988280 @default.
- W3083988280 hasPrimaryLocation W30839882801 @default.
- W3083988280 hasRelatedWork W2510217115 @default.