Matches in SemOpenAlex for { <https://semopenalex.org/work/W3084074310> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3084074310 endingPage "166641" @default.
- W3084074310 startingPage "166630" @default.
- W3084074310 abstract "Today, with the continuous promotion and development of IoT and 5G technology, Cyberspace has become an important pillar of economic and social development, and also a foundational domain of national security. Cyberspace security is attracting more and more attention. Therefore, detecting malware and its variants is of great significance to Cyberspace. However, the increasing sophistication of malicious variants, such as encryption, polymorphism and obfuscation, makes it more difficult to identified malware effectively. In this article, a malware detection method of code texture visualization based on an improved Faster RCNN (Region-Convolutional Neural Networks) combining transfer learning is proposed. We utilize visualization technology to map malicious code into corresponding images with typical texture features, and realize the classification of malware. Firstly, in order to quickly acquire and locate the representative texture of malware, we adopt CNN to extract the global and deeper features of malicious code images. Then with RPN (Region Proposal Network) we generate the target image frame, which is used to locate the core texture of malware file (.text file), to realize the accurate positioning of malicious features. Secondly, we preprocess and train Faster RCNN model with ImageNet set, and then transfer the model to the malware classification model to accelerate the convergence of the first model and promote generation performance. Thirdly, we construct an improved objective function in which a novel multi-label of classification proportion is added to solve the problem that the texture change of “.text” section and other sections in malicious code image is not obvious after transfer learning. We collect code samples of six malware families from Kaggle platform, and compared the experimental results before and after transfer. The results show that the novel method can accelerate the convergence of loss function, and obtain higher accuracy (92.8%), lower FPR (6.8%) and better P-R (precision-recall) curve." @default.
- W3084074310 created "2020-09-14" @default.
- W3084074310 creator A5017487509 @default.
- W3084074310 creator A5025047756 @default.
- W3084074310 creator A5034497811 @default.
- W3084074310 creator A5050277723 @default.
- W3084074310 creator A5072132077 @default.
- W3084074310 creator A5082003013 @default.
- W3084074310 date "2020-01-01" @default.
- W3084074310 modified "2023-10-02" @default.
- W3084074310 title "A Malware Detection Method of Code Texture Visualization Based on an Improved Faster RCNN Combining Transfer Learning" @default.
- W3084074310 cites W1893133781 @default.
- W3084074310 cites W1967185446 @default.
- W3084074310 cites W2005662348 @default.
- W3084074310 cites W2010065958 @default.
- W3084074310 cites W2045140281 @default.
- W3084074310 cites W2075830090 @default.
- W3084074310 cites W2084979543 @default.
- W3084074310 cites W2099053789 @default.
- W3084074310 cites W2108104525 @default.
- W3084074310 cites W2117991511 @default.
- W3084074310 cites W2155011304 @default.
- W3084074310 cites W2591830932 @default.
- W3084074310 cites W2792310543 @default.
- W3084074310 cites W2912755644 @default.
- W3084074310 cites W2931858311 @default.
- W3084074310 cites W639708223 @default.
- W3084074310 doi "https://doi.org/10.1109/access.2020.3022722" @default.
- W3084074310 hasPublicationYear "2020" @default.
- W3084074310 type Work @default.
- W3084074310 sameAs 3084074310 @default.
- W3084074310 citedByCount "22" @default.
- W3084074310 countsByYear W30840743102021 @default.
- W3084074310 countsByYear W30840743102022 @default.
- W3084074310 countsByYear W30840743102023 @default.
- W3084074310 crossrefType "journal-article" @default.
- W3084074310 hasAuthorship W3084074310A5017487509 @default.
- W3084074310 hasAuthorship W3084074310A5025047756 @default.
- W3084074310 hasAuthorship W3084074310A5034497811 @default.
- W3084074310 hasAuthorship W3084074310A5050277723 @default.
- W3084074310 hasAuthorship W3084074310A5072132077 @default.
- W3084074310 hasAuthorship W3084074310A5082003013 @default.
- W3084074310 hasBestOaLocation W30840743101 @default.
- W3084074310 hasConcept C119857082 @default.
- W3084074310 hasConcept C124101348 @default.
- W3084074310 hasConcept C150899416 @default.
- W3084074310 hasConcept C154945302 @default.
- W3084074310 hasConcept C177264268 @default.
- W3084074310 hasConcept C199360897 @default.
- W3084074310 hasConcept C2776760102 @default.
- W3084074310 hasConcept C36464697 @default.
- W3084074310 hasConcept C38652104 @default.
- W3084074310 hasConcept C41008148 @default.
- W3084074310 hasConcept C541664917 @default.
- W3084074310 hasConcept C81363708 @default.
- W3084074310 hasConceptScore W3084074310C119857082 @default.
- W3084074310 hasConceptScore W3084074310C124101348 @default.
- W3084074310 hasConceptScore W3084074310C150899416 @default.
- W3084074310 hasConceptScore W3084074310C154945302 @default.
- W3084074310 hasConceptScore W3084074310C177264268 @default.
- W3084074310 hasConceptScore W3084074310C199360897 @default.
- W3084074310 hasConceptScore W3084074310C2776760102 @default.
- W3084074310 hasConceptScore W3084074310C36464697 @default.
- W3084074310 hasConceptScore W3084074310C38652104 @default.
- W3084074310 hasConceptScore W3084074310C41008148 @default.
- W3084074310 hasConceptScore W3084074310C541664917 @default.
- W3084074310 hasConceptScore W3084074310C81363708 @default.
- W3084074310 hasFunder F4320313852 @default.
- W3084074310 hasFunder F4320321543 @default.
- W3084074310 hasFunder F4320324560 @default.
- W3084074310 hasFunder F4320327473 @default.
- W3084074310 hasFunder F4320327613 @default.
- W3084074310 hasLocation W30840743101 @default.
- W3084074310 hasOpenAccess W3084074310 @default.
- W3084074310 hasPrimaryLocation W30840743101 @default.
- W3084074310 hasRelatedWork W2795033129 @default.
- W3084074310 hasRelatedWork W3012393889 @default.
- W3084074310 hasRelatedWork W3018421652 @default.
- W3084074310 hasRelatedWork W3021430260 @default.
- W3084074310 hasRelatedWork W3091976719 @default.
- W3084074310 hasRelatedWork W3135818718 @default.
- W3084074310 hasRelatedWork W3192840557 @default.
- W3084074310 hasRelatedWork W4287776258 @default.
- W3084074310 hasRelatedWork W4313563103 @default.
- W3084074310 hasRelatedWork W4366224123 @default.
- W3084074310 hasVolume "8" @default.
- W3084074310 isParatext "false" @default.
- W3084074310 isRetracted "false" @default.
- W3084074310 magId "3084074310" @default.
- W3084074310 workType "article" @default.