Matches in SemOpenAlex for { <https://semopenalex.org/work/W3084077384> ?p ?o ?g. }
- W3084077384 endingPage "123605" @default.
- W3084077384 startingPage "123605" @default.
- W3084077384 abstract "This work explores simple relations that follow from the momentum-integral equation absent a pressure gradient. The resulting expressions enable us to relate the boundary-layer characteristics of a velocity profile, $u(y)$, to an assumed flow function and its wall derivative relative to the wall-normal coordinate, $y$. Consequently, disturbance, displacement, and momentum thicknesses, as well as skin friction and drag coefficients, which are typically evaluated and tabulated in classical monographs, can be readily determined for a given profile, $F(xi)=u/U$. Here $xi=y/delta$ denotes the boundary-layer coordinate. These expressions are then employed to provide a rational explanation for the 1921 Pohlhausen polynomial paradox, namely, the reason why a quartic representation of the velocity leads to less accurate predictions of the disturbance, displacement, and momentum thicknesses than using cubic or quadratic polynomials. Not only do we identify the factors underlying this behaviour, we proceed to outline a procedure to overcome its manifestation at any order. This enables us to derive optimal piecewise approximations that do not suffer from the particular limitations affecting Pohlhausen's $F(xi)=2xi-2xi^3 +xi^4$. For example, our alternative profile, $F(xi)=(5xi-3xi^3+xi^4)/3$, leads to an order-of-magnitude improvement in precision when incorporated into the K'arm'an-Pohlhausen approach in both viscous and thermal analyses. Then noting the significance of the Blasius constant, $bar{s} approx 1.630398$, this approach is extended to construct a set of uniformly valid solutions, including $F(xi)=1-exp[-bar{s}xi(1+bar{s}xi/2+xi^2)]$, which continues to hold beyond the boundary-layer edge as $yrightarrowinfty$. Given its substantially reduced error, the latter is shown, through comparisons to other models, to be practically equivalent to the Blasius solution." @default.
- W3084077384 created "2020-09-14" @default.
- W3084077384 creator A5045768438 @default.
- W3084077384 creator A5056903809 @default.
- W3084077384 date "2020-12-01" @default.
- W3084077384 modified "2023-10-13" @default.
- W3084077384 title "On the Kármán momentum-integral approach and the Pohlhausen paradox" @default.
- W3084077384 cites W1203840995 @default.
- W3084077384 cites W1965533242 @default.
- W3084077384 cites W1967434239 @default.
- W3084077384 cites W1971971288 @default.
- W3084077384 cites W1973741716 @default.
- W3084077384 cites W1976685820 @default.
- W3084077384 cites W1984067177 @default.
- W3084077384 cites W1984195403 @default.
- W3084077384 cites W1988584764 @default.
- W3084077384 cites W1991808464 @default.
- W3084077384 cites W1995543561 @default.
- W3084077384 cites W2002130907 @default.
- W3084077384 cites W2005289601 @default.
- W3084077384 cites W2010527056 @default.
- W3084077384 cites W2015790304 @default.
- W3084077384 cites W2027767660 @default.
- W3084077384 cites W2028900896 @default.
- W3084077384 cites W2029638418 @default.
- W3084077384 cites W2030206185 @default.
- W3084077384 cites W2032641349 @default.
- W3084077384 cites W2034052392 @default.
- W3084077384 cites W2034661879 @default.
- W3084077384 cites W2039234364 @default.
- W3084077384 cites W2040064797 @default.
- W3084077384 cites W2041116309 @default.
- W3084077384 cites W2044219774 @default.
- W3084077384 cites W2045183430 @default.
- W3084077384 cites W2046253627 @default.
- W3084077384 cites W2051834167 @default.
- W3084077384 cites W2059920404 @default.
- W3084077384 cites W2062508776 @default.
- W3084077384 cites W2066035123 @default.
- W3084077384 cites W2068765708 @default.
- W3084077384 cites W2071330142 @default.
- W3084077384 cites W2073819770 @default.
- W3084077384 cites W2073907272 @default.
- W3084077384 cites W2078119626 @default.
- W3084077384 cites W2080935709 @default.
- W3084077384 cites W2081387600 @default.
- W3084077384 cites W2083785150 @default.
- W3084077384 cites W2087895741 @default.
- W3084077384 cites W2090804152 @default.
- W3084077384 cites W2091520297 @default.
- W3084077384 cites W2092532818 @default.
- W3084077384 cites W2100207004 @default.
- W3084077384 cites W2104290631 @default.
- W3084077384 cites W2108248729 @default.
- W3084077384 cites W2113304700 @default.
- W3084077384 cites W2118910480 @default.
- W3084077384 cites W2119794696 @default.
- W3084077384 cites W2130664361 @default.
- W3084077384 cites W2149199266 @default.
- W3084077384 cites W2151835484 @default.
- W3084077384 cites W2158072633 @default.
- W3084077384 cites W2169284555 @default.
- W3084077384 cites W2187281016 @default.
- W3084077384 cites W2315787444 @default.
- W3084077384 cites W2324008843 @default.
- W3084077384 cites W2472043938 @default.
- W3084077384 cites W2484025150 @default.
- W3084077384 cites W2727190046 @default.
- W3084077384 cites W2730225878 @default.
- W3084077384 cites W2738840649 @default.
- W3084077384 cites W2746234242 @default.
- W3084077384 cites W2754543899 @default.
- W3084077384 cites W2761813923 @default.
- W3084077384 cites W2784579054 @default.
- W3084077384 cites W2804487117 @default.
- W3084077384 cites W2808221741 @default.
- W3084077384 cites W2922745813 @default.
- W3084077384 cites W2950956490 @default.
- W3084077384 cites W2981471311 @default.
- W3084077384 cites W2996573546 @default.
- W3084077384 cites W3105307083 @default.
- W3084077384 cites W4235788351 @default.
- W3084077384 cites W4255584266 @default.
- W3084077384 cites W2135794933 @default.
- W3084077384 doi "https://doi.org/10.1063/5.0036786" @default.
- W3084077384 hasPublicationYear "2020" @default.
- W3084077384 type Work @default.
- W3084077384 sameAs 3084077384 @default.
- W3084077384 citedByCount "16" @default.
- W3084077384 countsByYear W30840773842021 @default.
- W3084077384 countsByYear W30840773842022 @default.
- W3084077384 countsByYear W30840773842023 @default.
- W3084077384 crossrefType "journal-article" @default.
- W3084077384 hasAuthorship W3084077384A5045768438 @default.
- W3084077384 hasAuthorship W3084077384A5056903809 @default.
- W3084077384 hasBestOaLocation W30840773841 @default.
- W3084077384 hasConcept C10138342 @default.
- W3084077384 hasConcept C121332964 @default.