Matches in SemOpenAlex for { <https://semopenalex.org/work/W3084077437> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3084077437 endingPage "16167" @default.
- W3084077437 startingPage "16163" @default.
- W3084077437 abstract "Chaos communications have widely been applied to provide secure, and anti-jamming transmissions by exploiting the irregular chaotic behavior. However, the real-valued chaotic sequences imposed on the information induce interferences to the user data, thereby leading to reliability performance degradations. To address this issue, in this paper, we propose to utilize the intelligent, and feature extraction capability of the deep neural network (DNN) to learn the transmission patterns to demodulate the received signals. In our design, we propose to construct the long short-term memory (LSTM) unit-aided intelligent DNN-based deep learning (DL) demodulator for orthogonal frequency division multiplexing-aided differential chaos shift keying (OFDM-DCSK) systems. After learning, and extracting features of information-bearing chaotic transmissions at the training stage, the received signals can be recovered efficiently, and reliably at the deployment stage. Thanks to the recursive LSTM-aided DL design, correlations between information-bearing chaotic modulated signals can be exploited to enhance reliability performances. Simulation results demonstrate with the proposed DL demodulation design, the intelligent OFDM-DCSK system can achieve more reliable performances over additive white Gaussian noise (AWGN) channel, and fading channels compared with benchmark systems." @default.
- W3084077437 created "2020-09-14" @default.
- W3084077437 creator A5031071245 @default.
- W3084077437 creator A5046887099 @default.
- W3084077437 creator A5064657549 @default.
- W3084077437 creator A5088699170 @default.
- W3084077437 date "2020-12-01" @default.
- W3084077437 modified "2023-10-01" @default.
- W3084077437 title "Intelligent and Reliable Deep Learning LSTM Neural Networks-Based OFDM-DCSK Demodulation Design" @default.
- W3084077437 cites W1588345419 @default.
- W3084077437 cites W1689711448 @default.
- W3084077437 cites W2047440454 @default.
- W3084077437 cites W2097803538 @default.
- W3084077437 cites W2134444090 @default.
- W3084077437 cites W2156331736 @default.
- W3084077437 cites W2244359298 @default.
- W3084077437 cites W2317381733 @default.
- W3084077437 cites W2328902286 @default.
- W3084077437 cites W2344446931 @default.
- W3084077437 cites W2401059904 @default.
- W3084077437 cites W2734408173 @default.
- W3084077437 cites W2755095186 @default.
- W3084077437 cites W2891768968 @default.
- W3084077437 cites W2902897529 @default.
- W3084077437 cites W2911471242 @default.
- W3084077437 cites W2916238263 @default.
- W3084077437 cites W2919941951 @default.
- W3084077437 cites W2963290405 @default.
- W3084077437 cites W2971602096 @default.
- W3084077437 cites W3005526854 @default.
- W3084077437 doi "https://doi.org/10.1109/tvt.2020.3022043" @default.
- W3084077437 hasPublicationYear "2020" @default.
- W3084077437 type Work @default.
- W3084077437 sameAs 3084077437 @default.
- W3084077437 citedByCount "16" @default.
- W3084077437 countsByYear W30840774372021 @default.
- W3084077437 countsByYear W30840774372022 @default.
- W3084077437 countsByYear W30840774372023 @default.
- W3084077437 crossrefType "journal-article" @default.
- W3084077437 hasAuthorship W3084077437A5031071245 @default.
- W3084077437 hasAuthorship W3084077437A5046887099 @default.
- W3084077437 hasAuthorship W3084077437A5064657549 @default.
- W3084077437 hasAuthorship W3084077437A5088699170 @default.
- W3084077437 hasConcept C108583219 @default.
- W3084077437 hasConcept C127162648 @default.
- W3084077437 hasConcept C127413603 @default.
- W3084077437 hasConcept C154945302 @default.
- W3084077437 hasConcept C169334058 @default.
- W3084077437 hasConcept C195251586 @default.
- W3084077437 hasConcept C24326235 @default.
- W3084077437 hasConcept C2777052490 @default.
- W3084077437 hasConcept C40409654 @default.
- W3084077437 hasConcept C41008148 @default.
- W3084077437 hasConcept C50644808 @default.
- W3084077437 hasConcept C76155785 @default.
- W3084077437 hasConcept C81978471 @default.
- W3084077437 hasConceptScore W3084077437C108583219 @default.
- W3084077437 hasConceptScore W3084077437C127162648 @default.
- W3084077437 hasConceptScore W3084077437C127413603 @default.
- W3084077437 hasConceptScore W3084077437C154945302 @default.
- W3084077437 hasConceptScore W3084077437C169334058 @default.
- W3084077437 hasConceptScore W3084077437C195251586 @default.
- W3084077437 hasConceptScore W3084077437C24326235 @default.
- W3084077437 hasConceptScore W3084077437C2777052490 @default.
- W3084077437 hasConceptScore W3084077437C40409654 @default.
- W3084077437 hasConceptScore W3084077437C41008148 @default.
- W3084077437 hasConceptScore W3084077437C50644808 @default.
- W3084077437 hasConceptScore W3084077437C76155785 @default.
- W3084077437 hasConceptScore W3084077437C81978471 @default.
- W3084077437 hasIssue "12" @default.
- W3084077437 hasLocation W30840774371 @default.
- W3084077437 hasOpenAccess W3084077437 @default.
- W3084077437 hasPrimaryLocation W30840774371 @default.
- W3084077437 hasRelatedWork W2010530070 @default.
- W3084077437 hasRelatedWork W2123410437 @default.
- W3084077437 hasRelatedWork W2134524765 @default.
- W3084077437 hasRelatedWork W2158288340 @default.
- W3084077437 hasRelatedWork W2164953972 @default.
- W3084077437 hasRelatedWork W2363542843 @default.
- W3084077437 hasRelatedWork W2365797070 @default.
- W3084077437 hasRelatedWork W2392098846 @default.
- W3084077437 hasRelatedWork W2542562439 @default.
- W3084077437 hasRelatedWork W2952155161 @default.
- W3084077437 hasVolume "69" @default.
- W3084077437 isParatext "false" @default.
- W3084077437 isRetracted "false" @default.
- W3084077437 magId "3084077437" @default.
- W3084077437 workType "article" @default.