Matches in SemOpenAlex for { <https://semopenalex.org/work/W3084114485> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3084114485 endingPage "103556" @default.
- W3084114485 startingPage "103556" @default.
- W3084114485 abstract "The use of poorly designed and improperly implemented health information technology (HIT) may compound risks because it can disrupt established work patterns and encourage workarounds. Analyzing and learning from HIT events could reduce the risks and improve safety but are limited by accessible HIT event reports. In this study, we propose a hybrid deep learning model to identify HIT event reports from the FDA resource and thus establish the first publicly accessible database for HIT event reports. 6994 samples (3521 HIT and 3473 non-HIT events) extracted from the FDA MAUDE database were employed to assess nine individual and 120 hybrid models on the task of HIT identification. The optimal model was evaluated on an independent dataset prior to its application for establishing the HIT event database. The hybrid model consisting of logistic regression, CNN, and Hierarchical RNN (ACC = 0.903, AUC = 0.954, F1 score = 0.876) is superior to all the other models. The causes of errors include lack of root cause (72.3%), short descriptions (19.7%), and model undertrained (8.0%). The accuracy of the hybrid model on an independent dataset is reported as 0.862. We applied the optimal model to the entire MAUDE database (1991–2018) and generated an HIT event database with 48,997 reports. The first HIT event database contains 48,997 reports with an annual growth rate of 10% (~5000 reports). The strategy of HIT event identification and establishment of the database could help healthcare professionals describe, understand, integrate the events and propose solutions in the context of a fuller spectrum of HIT events." @default.
- W3084114485 created "2020-09-14" @default.
- W3084114485 creator A5026991814 @default.
- W3084114485 creator A5066283915 @default.
- W3084114485 date "2020-10-01" @default.
- W3084114485 modified "2023-10-17" @default.
- W3084114485 title "Creating a database for health IT events via a hybrid deep learning model" @default.
- W3084114485 cites W1832693441 @default.
- W3084114485 cites W1980566721 @default.
- W3084114485 cites W2069340802 @default.
- W3084114485 cites W2150290401 @default.
- W3084114485 cites W2241024151 @default.
- W3084114485 cites W2250539671 @default.
- W3084114485 cites W2340145588 @default.
- W3084114485 cites W2427452794 @default.
- W3084114485 cites W2470673105 @default.
- W3084114485 cites W2889919818 @default.
- W3084114485 cites W2889976358 @default.
- W3084114485 cites W2891177506 @default.
- W3084114485 cites W2898006595 @default.
- W3084114485 cites W2905097734 @default.
- W3084114485 doi "https://doi.org/10.1016/j.jbi.2020.103556" @default.
- W3084114485 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32916305" @default.
- W3084114485 hasPublicationYear "2020" @default.
- W3084114485 type Work @default.
- W3084114485 sameAs 3084114485 @default.
- W3084114485 citedByCount "3" @default.
- W3084114485 countsByYear W30841144852021 @default.
- W3084114485 countsByYear W30841144852022 @default.
- W3084114485 crossrefType "journal-article" @default.
- W3084114485 hasAuthorship W3084114485A5026991814 @default.
- W3084114485 hasAuthorship W3084114485A5066283915 @default.
- W3084114485 hasConcept C116834253 @default.
- W3084114485 hasConcept C119857082 @default.
- W3084114485 hasConcept C121332964 @default.
- W3084114485 hasConcept C124101348 @default.
- W3084114485 hasConcept C148524875 @default.
- W3084114485 hasConcept C151730666 @default.
- W3084114485 hasConcept C154945302 @default.
- W3084114485 hasConcept C2779343474 @default.
- W3084114485 hasConcept C2779662365 @default.
- W3084114485 hasConcept C41008148 @default.
- W3084114485 hasConcept C59822182 @default.
- W3084114485 hasConcept C62520636 @default.
- W3084114485 hasConcept C77088390 @default.
- W3084114485 hasConcept C86803240 @default.
- W3084114485 hasConceptScore W3084114485C116834253 @default.
- W3084114485 hasConceptScore W3084114485C119857082 @default.
- W3084114485 hasConceptScore W3084114485C121332964 @default.
- W3084114485 hasConceptScore W3084114485C124101348 @default.
- W3084114485 hasConceptScore W3084114485C148524875 @default.
- W3084114485 hasConceptScore W3084114485C151730666 @default.
- W3084114485 hasConceptScore W3084114485C154945302 @default.
- W3084114485 hasConceptScore W3084114485C2779343474 @default.
- W3084114485 hasConceptScore W3084114485C2779662365 @default.
- W3084114485 hasConceptScore W3084114485C41008148 @default.
- W3084114485 hasConceptScore W3084114485C59822182 @default.
- W3084114485 hasConceptScore W3084114485C62520636 @default.
- W3084114485 hasConceptScore W3084114485C77088390 @default.
- W3084114485 hasConceptScore W3084114485C86803240 @default.
- W3084114485 hasLocation W30841144851 @default.
- W3084114485 hasOpenAccess W3084114485 @default.
- W3084114485 hasPrimaryLocation W30841144851 @default.
- W3084114485 hasRelatedWork W2588587315 @default.
- W3084114485 hasRelatedWork W2605281151 @default.
- W3084114485 hasRelatedWork W2947903144 @default.
- W3084114485 hasRelatedWork W2989759966 @default.
- W3084114485 hasRelatedWork W3005154454 @default.
- W3084114485 hasRelatedWork W3106359073 @default.
- W3084114485 hasRelatedWork W3154941836 @default.
- W3084114485 hasRelatedWork W3194539120 @default.
- W3084114485 hasRelatedWork W4294031299 @default.
- W3084114485 hasRelatedWork W4313549251 @default.
- W3084114485 hasVolume "110" @default.
- W3084114485 isParatext "false" @default.
- W3084114485 isRetracted "false" @default.
- W3084114485 magId "3084114485" @default.
- W3084114485 workType "article" @default.