Matches in SemOpenAlex for { <https://semopenalex.org/work/W3084148525> ?p ?o ?g. }
- W3084148525 abstract "Abstract Atomistic simulations can provide valuable, experimentally-verifiable insights into protein folding mechanisms, but existing ab initio simulation methods are restricted to only the smallest proteins due to severe computational speed limits. The folding of larger proteins has been studied using native-centric potential functions, but such models omit the potentially crucial role of non-native interactions.Here, we present an algorithm, entitled DBFOLD, which can predict folding pathways for a wide range of proteins while accounting for the effects of non-native contacts. In addition, DBFOLD can predict the relative rates of different transitions within a protein’s folding pathway. To accomplish this, rather than directly simulating folding, our method combines equilibrium Monte-Carlo simulations, which deploy enhanced sampling, with unfolding simulations at high temperatures. We show that under certain conditions, trajectories from these two types of simulations can be jointly analyzed to compute unknown folding rates from detailed balance. This requires inferring free energies from the equilibrium simulations, and extrapolating transition rates from the unfolding simulations to lower, physiologically-reasonable temperatures at which the native state is marginally stable. As a proof of principle, we show that our method can accurately predict folding pathways and Monte-Carlo rates for the well-characterized Streptococcal protein G. We then show that our method significantly reduces the amount of computation time required to compute the folding pathways of large, misfolding-prone proteins that lie beyond the reach of existing direct simulation methods. Our algorithm, which is available online, can generate detailed atomistic models of protein folding mechanisms while shedding light on the role of non-native intermediates which may crucially affect organismal fitness and are frequently implicated in disease. Author summary Many proteins must adopt a specific structure in order to function. Computational simulations have been used to shed light on the mechanisms of protein folding, but unfortunately, realistic simulations can typically only be run for small proteins, due to severe limits in computational speed. Here, we present a method to solve this problem, whereby instead of directly simulating folding from an unfolded state, we run simulations that allow for computation of equilibrium folding free energies, alongside high temperature simulations to compute unfolding rates. From these quantities, folding rates can be computed using detailed balance. Importantly, our method can account for the effects of nonnative contacts which transiently form during folding and must be broken prior to adoption of the native state. Such contacts, which are often excluded from simple models of folding, may crucially affect real protein folding pathways and are often observed in folding intermediates implicated in disease." @default.
- W3084148525 created "2020-09-14" @default.
- W3084148525 creator A5006203709 @default.
- W3084148525 creator A5011258863 @default.
- W3084148525 creator A5016084101 @default.
- W3084148525 date "2020-09-10" @default.
- W3084148525 modified "2023-09-27" @default.
- W3084148525 title "DBFOLD: An efficient algorithm for computing folding pathways of complex proteins" @default.
- W3084148525 cites W1505900198 @default.
- W3084148525 cites W1966712500 @default.
- W3084148525 cites W1968442255 @default.
- W3084148525 cites W1969356039 @default.
- W3084148525 cites W1974618862 @default.
- W3084148525 cites W1975969507 @default.
- W3084148525 cites W1978905291 @default.
- W3084148525 cites W1988529738 @default.
- W3084148525 cites W1990700294 @default.
- W3084148525 cites W2005865331 @default.
- W3084148525 cites W2011542536 @default.
- W3084148525 cites W2013371652 @default.
- W3084148525 cites W2015943928 @default.
- W3084148525 cites W2024762727 @default.
- W3084148525 cites W2035995793 @default.
- W3084148525 cites W2040809566 @default.
- W3084148525 cites W2041080217 @default.
- W3084148525 cites W2043205949 @default.
- W3084148525 cites W2053291419 @default.
- W3084148525 cites W2061844749 @default.
- W3084148525 cites W2063945425 @default.
- W3084148525 cites W2065919348 @default.
- W3084148525 cites W2066370108 @default.
- W3084148525 cites W2082759836 @default.
- W3084148525 cites W2092181851 @default.
- W3084148525 cites W2101447754 @default.
- W3084148525 cites W2107100181 @default.
- W3084148525 cites W2109102515 @default.
- W3084148525 cites W2112154906 @default.
- W3084148525 cites W2121422287 @default.
- W3084148525 cites W2137604324 @default.
- W3084148525 cites W2138309685 @default.
- W3084148525 cites W2147289825 @default.
- W3084148525 cites W2148691151 @default.
- W3084148525 cites W2158476854 @default.
- W3084148525 cites W2160014344 @default.
- W3084148525 cites W2165768701 @default.
- W3084148525 cites W2167468911 @default.
- W3084148525 cites W2260580338 @default.
- W3084148525 cites W2290502424 @default.
- W3084148525 cites W2433535207 @default.
- W3084148525 cites W2465646024 @default.
- W3084148525 cites W2471690602 @default.
- W3084148525 cites W2603593687 @default.
- W3084148525 cites W2611528178 @default.
- W3084148525 cites W2730826573 @default.
- W3084148525 cites W2736142726 @default.
- W3084148525 cites W2749188715 @default.
- W3084148525 cites W2767197262 @default.
- W3084148525 cites W2775336518 @default.
- W3084148525 cites W2783073729 @default.
- W3084148525 cites W2788861451 @default.
- W3084148525 cites W2802432042 @default.
- W3084148525 cites W2805624672 @default.
- W3084148525 cites W2891468774 @default.
- W3084148525 cites W2915248527 @default.
- W3084148525 cites W2924714335 @default.
- W3084148525 cites W2947457847 @default.
- W3084148525 cites W2951500013 @default.
- W3084148525 cites W2986996910 @default.
- W3084148525 cites W3000413147 @default.
- W3084148525 cites W3004726194 @default.
- W3084148525 cites W3101212224 @default.
- W3084148525 cites W837523969 @default.
- W3084148525 doi "https://doi.org/10.1101/2020.09.09.289116" @default.
- W3084148525 hasPublicationYear "2020" @default.
- W3084148525 type Work @default.
- W3084148525 sameAs 3084148525 @default.
- W3084148525 citedByCount "0" @default.
- W3084148525 crossrefType "posted-content" @default.
- W3084148525 hasAuthorship W3084148525A5006203709 @default.
- W3084148525 hasAuthorship W3084148525A5011258863 @default.
- W3084148525 hasAuthorship W3084148525A5016084101 @default.
- W3084148525 hasBestOaLocation W30841485251 @default.
- W3084148525 hasConcept C105795698 @default.
- W3084148525 hasConcept C11413529 @default.
- W3084148525 hasConcept C119599485 @default.
- W3084148525 hasConcept C121332964 @default.
- W3084148525 hasConcept C121864883 @default.
- W3084148525 hasConcept C127413603 @default.
- W3084148525 hasConcept C147597530 @default.
- W3084148525 hasConcept C162203774 @default.
- W3084148525 hasConcept C185592680 @default.
- W3084148525 hasConcept C186060115 @default.
- W3084148525 hasConcept C19499675 @default.
- W3084148525 hasConcept C204328495 @default.
- W3084148525 hasConcept C2776545253 @default.
- W3084148525 hasConcept C33923547 @default.
- W3084148525 hasConcept C41008148 @default.
- W3084148525 hasConcept C45374587 @default.
- W3084148525 hasConcept C46449900 @default.
- W3084148525 hasConcept C55493867 @default.