Matches in SemOpenAlex for { <https://semopenalex.org/work/W3084301013> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W3084301013 abstract "In order to maintain national maritime security, it is particularly important to master the navigation rules of ships on important maritime military routes. Traditional trajectory prediction methods cannot flexibly implement the function of autonomous re-prediction based on emergencies. This paper considers the large amount of trajectory data of maritime moving targets and the existence of multi-dimensional factors and presents a high-precision track prediction model under multi-dimensional factors. This algorithm uses the Douglas-Peucker algorithm to compress the track data and uses the DBSCAN(Density-Based Spatial Clustering of Applications with Noise) algorithm for trajectory clustering and predicts the trajectory through the LRCN(Long-term Recurrent Convolutional Networks) prediction model. Simulation results show that using this algorithm greatly reduces the amount of calculations and can achieve a high-precision prediction; Under emergency cases, the algorithm can achieve autonomous re-prediction with high accuracy." @default.
- W3084301013 created "2020-09-14" @default.
- W3084301013 creator A5018140811 @default.
- W3084301013 creator A5019061615 @default.
- W3084301013 creator A5030396384 @default.
- W3084301013 creator A5033355107 @default.
- W3084301013 date "2020-07-01" @default.
- W3084301013 modified "2023-09-26" @default.
- W3084301013 title "High-precision intelligent track prediction under multi-dimensional conditions" @default.
- W3084301013 cites W1967444754 @default.
- W3084301013 cites W1997458143 @default.
- W3084301013 cites W2015366158 @default.
- W3084301013 cites W2040297119 @default.
- W3084301013 cites W2064064283 @default.
- W3084301013 cites W2075364600 @default.
- W3084301013 cites W2083316861 @default.
- W3084301013 cites W2136691316 @default.
- W3084301013 cites W2153207204 @default.
- W3084301013 doi "https://doi.org/10.23919/ccc50068.2020.9188725" @default.
- W3084301013 hasPublicationYear "2020" @default.
- W3084301013 type Work @default.
- W3084301013 sameAs 3084301013 @default.
- W3084301013 citedByCount "1" @default.
- W3084301013 countsByYear W30843010132022 @default.
- W3084301013 crossrefType "proceedings-article" @default.
- W3084301013 hasAuthorship W3084301013A5018140811 @default.
- W3084301013 hasAuthorship W3084301013A5019061615 @default.
- W3084301013 hasAuthorship W3084301013A5030396384 @default.
- W3084301013 hasAuthorship W3084301013A5033355107 @default.
- W3084301013 hasConcept C111919701 @default.
- W3084301013 hasConcept C154945302 @default.
- W3084301013 hasConcept C41008148 @default.
- W3084301013 hasConcept C79403827 @default.
- W3084301013 hasConcept C89992363 @default.
- W3084301013 hasConceptScore W3084301013C111919701 @default.
- W3084301013 hasConceptScore W3084301013C154945302 @default.
- W3084301013 hasConceptScore W3084301013C41008148 @default.
- W3084301013 hasConceptScore W3084301013C79403827 @default.
- W3084301013 hasConceptScore W3084301013C89992363 @default.
- W3084301013 hasLocation W30843010131 @default.
- W3084301013 hasOpenAccess W3084301013 @default.
- W3084301013 hasPrimaryLocation W30843010131 @default.
- W3084301013 hasRelatedWork W1519398290 @default.
- W3084301013 hasRelatedWork W2056851291 @default.
- W3084301013 hasRelatedWork W2081451811 @default.
- W3084301013 hasRelatedWork W2122324098 @default.
- W3084301013 hasRelatedWork W2363207358 @default.
- W3084301013 hasRelatedWork W2363789696 @default.
- W3084301013 hasRelatedWork W2889140280 @default.
- W3084301013 hasRelatedWork W2889205661 @default.
- W3084301013 hasRelatedWork W2909026411 @default.
- W3084301013 hasRelatedWork W2972412491 @default.
- W3084301013 isParatext "false" @default.
- W3084301013 isRetracted "false" @default.
- W3084301013 magId "3084301013" @default.
- W3084301013 workType "article" @default.