Matches in SemOpenAlex for { <https://semopenalex.org/work/W3084314056> ?p ?o ?g. }
- W3084314056 abstract "Breast cancer is one of the most common cancer diseases in women. The rapid and accurate diagnosis of breast cancer is of great significance for the treatment of cancer. Artificial intelligence and machine learning algorithms are used to identify breast malignant tumors, which can effectively solve the problems of insufficient recognition accuracy and long time-consuming in traditional breast cancer diagnosis methods. To solve these problems, we proposed a method of attribute selection and feature extraction based on random forest (RF) combined with principal component analysis (PCA) for rapid and accurate diagnosis of breast cancer. Firstly, RF was used to reduce 30 attributes of breast cancer categorical data. According to the average importance of attributes and out of bag error, 21 relatively important attribute data were selected for feature extraction based on PCA. The seven features extracted from PCA were used to establish an extreme learning machine (ELM) classification model with different activation functions. By comparing the classification accuracy and training time of these different models, the activation function of the hidden layer was determined as the sigmoid function. When the number of neurons in the hidden layer was 27, the accuracy of the prediction set was 98.75%, the accuracy of the training set was 99.06%, and the training time was only 0.0022s. Finally, in order to verify the superiority of this method in breast cancer diagnosis, we compared with the ELM model based on the original breast cancer data and other intelligent classification algorithm models. The algorithm used in this paper has a faster recognition time and a higher recognition accuracy than other algorithms. We also used the breast cancer data of breast tissue reactance features to verify the reliability of this method, and ideal results were obtained. The experimental results show that RF-PCA combined with ELM can significantly reduce the time required for the diagnosis of breast cancer, which has the ability of rapid and accurate identification of breast cancer and provides a theoretical basis for the intelligent diagnosis of breast cancer." @default.
- W3084314056 created "2020-09-14" @default.
- W3084314056 creator A5016019223 @default.
- W3084314056 creator A5035486573 @default.
- W3084314056 creator A5041980034 @default.
- W3084314056 creator A5057318790 @default.
- W3084314056 date "2020-09-09" @default.
- W3084314056 modified "2023-09-25" @default.
- W3084314056 title "RF-PCA: A New Solution for Rapid Identification of Breast Cancer Categorical Data Based on Attribute Selection and Feature Extraction" @default.
- W3084314056 cites W1441667604 @default.
- W3084314056 cites W1967374687 @default.
- W3084314056 cites W1975642869 @default.
- W3084314056 cites W2019798812 @default.
- W3084314056 cites W2034656646 @default.
- W3084314056 cites W2055734602 @default.
- W3084314056 cites W2055939299 @default.
- W3084314056 cites W2065281378 @default.
- W3084314056 cites W2078136378 @default.
- W3084314056 cites W2091087636 @default.
- W3084314056 cites W2111072639 @default.
- W3084314056 cites W2119479037 @default.
- W3084314056 cites W2123519431 @default.
- W3084314056 cites W2127749126 @default.
- W3084314056 cites W2133651588 @default.
- W3084314056 cites W2147329325 @default.
- W3084314056 cites W2150101675 @default.
- W3084314056 cites W2150776916 @default.
- W3084314056 cites W2155261478 @default.
- W3084314056 cites W2157595416 @default.
- W3084314056 cites W2165956633 @default.
- W3084314056 cites W2231762928 @default.
- W3084314056 cites W2248427651 @default.
- W3084314056 cites W2268875920 @default.
- W3084314056 cites W2506250005 @default.
- W3084314056 cites W2521209341 @default.
- W3084314056 cites W2560907635 @default.
- W3084314056 cites W2580840371 @default.
- W3084314056 cites W2581215590 @default.
- W3084314056 cites W2592150536 @default.
- W3084314056 cites W2657852314 @default.
- W3084314056 cites W2767586446 @default.
- W3084314056 cites W2773381949 @default.
- W3084314056 cites W2789677792 @default.
- W3084314056 cites W2794764830 @default.
- W3084314056 cites W2795084638 @default.
- W3084314056 cites W2802578678 @default.
- W3084314056 cites W2896346647 @default.
- W3084314056 cites W2900948201 @default.
- W3084314056 cites W2911964244 @default.
- W3084314056 cites W2914010220 @default.
- W3084314056 cites W2979291688 @default.
- W3084314056 cites W2999417355 @default.
- W3084314056 doi "https://doi.org/10.3389/fgene.2020.566057" @default.
- W3084314056 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7510777" @default.
- W3084314056 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33033496" @default.
- W3084314056 hasPublicationYear "2020" @default.
- W3084314056 type Work @default.
- W3084314056 sameAs 3084314056 @default.
- W3084314056 citedByCount "11" @default.
- W3084314056 countsByYear W30843140562021 @default.
- W3084314056 countsByYear W30843140562022 @default.
- W3084314056 countsByYear W30843140562023 @default.
- W3084314056 crossrefType "journal-article" @default.
- W3084314056 hasAuthorship W3084314056A5016019223 @default.
- W3084314056 hasAuthorship W3084314056A5035486573 @default.
- W3084314056 hasAuthorship W3084314056A5041980034 @default.
- W3084314056 hasAuthorship W3084314056A5057318790 @default.
- W3084314056 hasBestOaLocation W30843140561 @default.
- W3084314056 hasConcept C119857082 @default.
- W3084314056 hasConcept C121608353 @default.
- W3084314056 hasConcept C124101348 @default.
- W3084314056 hasConcept C126322002 @default.
- W3084314056 hasConcept C148483581 @default.
- W3084314056 hasConcept C153180895 @default.
- W3084314056 hasConcept C154945302 @default.
- W3084314056 hasConcept C169258074 @default.
- W3084314056 hasConcept C27438332 @default.
- W3084314056 hasConcept C2780150128 @default.
- W3084314056 hasConcept C41008148 @default.
- W3084314056 hasConcept C50644808 @default.
- W3084314056 hasConcept C52622490 @default.
- W3084314056 hasConcept C5274069 @default.
- W3084314056 hasConcept C530470458 @default.
- W3084314056 hasConcept C71924100 @default.
- W3084314056 hasConceptScore W3084314056C119857082 @default.
- W3084314056 hasConceptScore W3084314056C121608353 @default.
- W3084314056 hasConceptScore W3084314056C124101348 @default.
- W3084314056 hasConceptScore W3084314056C126322002 @default.
- W3084314056 hasConceptScore W3084314056C148483581 @default.
- W3084314056 hasConceptScore W3084314056C153180895 @default.
- W3084314056 hasConceptScore W3084314056C154945302 @default.
- W3084314056 hasConceptScore W3084314056C169258074 @default.
- W3084314056 hasConceptScore W3084314056C27438332 @default.
- W3084314056 hasConceptScore W3084314056C2780150128 @default.
- W3084314056 hasConceptScore W3084314056C41008148 @default.
- W3084314056 hasConceptScore W3084314056C50644808 @default.
- W3084314056 hasConceptScore W3084314056C52622490 @default.
- W3084314056 hasConceptScore W3084314056C5274069 @default.
- W3084314056 hasConceptScore W3084314056C530470458 @default.
- W3084314056 hasConceptScore W3084314056C71924100 @default.