Matches in SemOpenAlex for { <https://semopenalex.org/work/W3084316096> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3084316096 abstract "Advancements in online sensing technologies and wireless networking has reshaped the competitive landscape of manufacturing systems, leading to exponential growth of data. Among various data types, high-dimensional data sources such as images and videos play an important role in process monitoring. Efficient utilization of such sources can help systems reach high accuracy in fault diagnosis. On the other hand, while the researches on statistical process control (SPC) tools are tremendous, the application of SPC tools considering high-dimensional data sets has received less attention due to their complexity. In this paper, we try to address this gap by designing and developing a hybrid model based on deep learning (DL) and SPC models to monitor the manufacturing process in presence of high-dimensional data. In particular, we first apply a Fast Region-based Convolutional Network method referred to Fast R-CNN in order to monitor the image sequences over time. Then, some statistical features are derived and plotted on the multivariate exponentially weighted moving average (EWMA) control chart. The effectiveness of proposed hybrid model is illustrated through a numerical example." @default.
- W3084316096 created "2020-09-14" @default.
- W3084316096 creator A5046505266 @default.
- W3084316096 creator A5083902647 @default.
- W3084316096 creator A5085467616 @default.
- W3084316096 creator A5089551127 @default.
- W3084316096 date "2020-06-01" @default.
- W3084316096 modified "2023-09-27" @default.
- W3084316096 title "Integrated Deep Learning and Statistical Process Control for Online Monitoring of Manufacturing Processes" @default.
- W3084316096 cites W147336408 @default.
- W3084316096 cites W1536680647 @default.
- W3084316096 cites W1664431191 @default.
- W3084316096 cites W1964357740 @default.
- W3084316096 cites W2095303958 @default.
- W3084316096 cites W2114158132 @default.
- W3084316096 cites W2557728737 @default.
- W3084316096 cites W2895046268 @default.
- W3084316096 cites W2913085327 @default.
- W3084316096 cites W2921155494 @default.
- W3084316096 cites W2963037989 @default.
- W3084316096 cites W2965491691 @default.
- W3084316096 cites W2966005396 @default.
- W3084316096 cites W4230065791 @default.
- W3084316096 doi "https://doi.org/10.1109/icphm49022.2020.9187046" @default.
- W3084316096 hasPublicationYear "2020" @default.
- W3084316096 type Work @default.
- W3084316096 sameAs 3084316096 @default.
- W3084316096 citedByCount "1" @default.
- W3084316096 countsByYear W30843160962023 @default.
- W3084316096 crossrefType "proceedings-article" @default.
- W3084316096 hasAuthorship W3084316096A5046505266 @default.
- W3084316096 hasAuthorship W3084316096A5083902647 @default.
- W3084316096 hasAuthorship W3084316096A5085467616 @default.
- W3084316096 hasAuthorship W3084316096A5089551127 @default.
- W3084316096 hasConcept C108583219 @default.
- W3084316096 hasConcept C111919701 @default.
- W3084316096 hasConcept C113644684 @default.
- W3084316096 hasConcept C119857082 @default.
- W3084316096 hasConcept C124101348 @default.
- W3084316096 hasConcept C152745839 @default.
- W3084316096 hasConcept C154945302 @default.
- W3084316096 hasConcept C155386361 @default.
- W3084316096 hasConcept C172707124 @default.
- W3084316096 hasConcept C196985124 @default.
- W3084316096 hasConcept C2982736386 @default.
- W3084316096 hasConcept C41008148 @default.
- W3084316096 hasConcept C74746147 @default.
- W3084316096 hasConcept C79403827 @default.
- W3084316096 hasConcept C98045186 @default.
- W3084316096 hasConceptScore W3084316096C108583219 @default.
- W3084316096 hasConceptScore W3084316096C111919701 @default.
- W3084316096 hasConceptScore W3084316096C113644684 @default.
- W3084316096 hasConceptScore W3084316096C119857082 @default.
- W3084316096 hasConceptScore W3084316096C124101348 @default.
- W3084316096 hasConceptScore W3084316096C152745839 @default.
- W3084316096 hasConceptScore W3084316096C154945302 @default.
- W3084316096 hasConceptScore W3084316096C155386361 @default.
- W3084316096 hasConceptScore W3084316096C172707124 @default.
- W3084316096 hasConceptScore W3084316096C196985124 @default.
- W3084316096 hasConceptScore W3084316096C2982736386 @default.
- W3084316096 hasConceptScore W3084316096C41008148 @default.
- W3084316096 hasConceptScore W3084316096C74746147 @default.
- W3084316096 hasConceptScore W3084316096C79403827 @default.
- W3084316096 hasConceptScore W3084316096C98045186 @default.
- W3084316096 hasLocation W30843160961 @default.
- W3084316096 hasOpenAccess W3084316096 @default.
- W3084316096 hasPrimaryLocation W30843160961 @default.
- W3084316096 hasRelatedWork W1977598384 @default.
- W3084316096 hasRelatedWork W1998611073 @default.
- W3084316096 hasRelatedWork W2030933855 @default.
- W3084316096 hasRelatedWork W2055715190 @default.
- W3084316096 hasRelatedWork W2068415042 @default.
- W3084316096 hasRelatedWork W2156894388 @default.
- W3084316096 hasRelatedWork W2551875500 @default.
- W3084316096 hasRelatedWork W2617031979 @default.
- W3084316096 hasRelatedWork W3084316096 @default.
- W3084316096 hasRelatedWork W755050109 @default.
- W3084316096 isParatext "false" @default.
- W3084316096 isRetracted "false" @default.
- W3084316096 magId "3084316096" @default.
- W3084316096 workType "article" @default.