Matches in SemOpenAlex for { <https://semopenalex.org/work/W3084355633> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3084355633 abstract "Detection of burn marks due to wildfires in inaccessible rain forests is important for various disaster management and ecological studies. The fragmented nature of arable landscapes and diverse cropping patterns often thwart the precise mapping of burn scars. Recent advances in remote-sensing and availability of multimodal data offer a viable solution to this mapping problem. However, the task to segment burn marks is difficult because of its indistinguishably with similar looking land patterns, severe fragmented nature of burn marks and partially labelled noisy datasets. In this work we present AmazonNET -- a convolutional based network that allows extracting of burn patters from multimodal remote sensing images. The network consists of UNet: a well-known encoder decoder type of architecture with skip connections commonly used in biomedical segmentation. The proposed framework utilises stacked RGB-NIR channels to segment burn scars from the pastures by training on a new weakly labelled noisy dataset from Amazonia. Our model illustrates superior performance by correctly identifying partially labelled burn scars and rejecting incorrectly labelled samples, demonstrating our approach as one of the first to effectively utilise deep learning based segmentation models in multimodal burn scar identification." @default.
- W3084355633 created "2020-09-14" @default.
- W3084355633 creator A5020786167 @default.
- W3084355633 creator A5046399334 @default.
- W3084355633 creator A5053854862 @default.
- W3084355633 creator A5075403236 @default.
- W3084355633 date "2020-09-10" @default.
- W3084355633 modified "2023-09-23" @default.
- W3084355633 title "Multimodal Noisy Segmentation based fragmented burn scars identification in Amazon Rainforest" @default.
- W3084355633 cites W1702419847 @default.
- W3084355633 cites W1901129140 @default.
- W3084355633 cites W1923314171 @default.
- W3084355633 cites W2019329118 @default.
- W3084355633 cites W2085690370 @default.
- W3084355633 cites W2102142855 @default.
- W3084355633 cites W2121502378 @default.
- W3084355633 cites W2150066425 @default.
- W3084355633 cites W2161969291 @default.
- W3084355633 cites W2340897893 @default.
- W3084355633 cites W2547571856 @default.
- W3084355633 cites W2623518586 @default.
- W3084355633 cites W2765801851 @default.
- W3084355633 cites W2770853283 @default.
- W3084355633 cites W2792767783 @default.
- W3084355633 cites W2806581075 @default.
- W3084355633 cites W2900465986 @default.
- W3084355633 cites W2913066018 @default.
- W3084355633 cites W2934268922 @default.
- W3084355633 cites W2962862396 @default.
- W3084355633 cites W2963881378 @default.
- W3084355633 cites W2982507557 @default.
- W3084355633 cites W2998082161 @default.
- W3084355633 cites W2998105145 @default.
- W3084355633 cites W3035356612 @default.
- W3084355633 hasPublicationYear "2020" @default.
- W3084355633 type Work @default.
- W3084355633 sameAs 3084355633 @default.
- W3084355633 citedByCount "0" @default.
- W3084355633 crossrefType "posted-content" @default.
- W3084355633 hasAuthorship W3084355633A5020786167 @default.
- W3084355633 hasAuthorship W3084355633A5046399334 @default.
- W3084355633 hasAuthorship W3084355633A5053854862 @default.
- W3084355633 hasAuthorship W3084355633A5075403236 @default.
- W3084355633 hasConcept C108583219 @default.
- W3084355633 hasConcept C116834253 @default.
- W3084355633 hasConcept C153180895 @default.
- W3084355633 hasConcept C154945302 @default.
- W3084355633 hasConcept C18903297 @default.
- W3084355633 hasConcept C205649164 @default.
- W3084355633 hasConcept C31972630 @default.
- W3084355633 hasConcept C41008148 @default.
- W3084355633 hasConcept C535291247 @default.
- W3084355633 hasConcept C62649853 @default.
- W3084355633 hasConcept C86803240 @default.
- W3084355633 hasConcept C89600930 @default.
- W3084355633 hasConceptScore W3084355633C108583219 @default.
- W3084355633 hasConceptScore W3084355633C116834253 @default.
- W3084355633 hasConceptScore W3084355633C153180895 @default.
- W3084355633 hasConceptScore W3084355633C154945302 @default.
- W3084355633 hasConceptScore W3084355633C18903297 @default.
- W3084355633 hasConceptScore W3084355633C205649164 @default.
- W3084355633 hasConceptScore W3084355633C31972630 @default.
- W3084355633 hasConceptScore W3084355633C41008148 @default.
- W3084355633 hasConceptScore W3084355633C535291247 @default.
- W3084355633 hasConceptScore W3084355633C62649853 @default.
- W3084355633 hasConceptScore W3084355633C86803240 @default.
- W3084355633 hasConceptScore W3084355633C89600930 @default.
- W3084355633 hasLocation W30843556331 @default.
- W3084355633 hasOpenAccess W3084355633 @default.
- W3084355633 hasPrimaryLocation W30843556331 @default.
- W3084355633 hasRelatedWork W2076923985 @default.
- W3084355633 hasRelatedWork W2809282627 @default.
- W3084355633 hasRelatedWork W2900897267 @default.
- W3084355633 hasRelatedWork W2952142982 @default.
- W3084355633 hasRelatedWork W2987544319 @default.
- W3084355633 hasRelatedWork W3045606376 @default.
- W3084355633 hasRelatedWork W3045791386 @default.
- W3084355633 hasRelatedWork W3089803854 @default.
- W3084355633 hasRelatedWork W3109741163 @default.
- W3084355633 hasRelatedWork W3111055505 @default.
- W3084355633 hasRelatedWork W3111348166 @default.
- W3084355633 hasRelatedWork W3120759590 @default.
- W3084355633 hasRelatedWork W3134552483 @default.
- W3084355633 hasRelatedWork W3160716376 @default.
- W3084355633 hasRelatedWork W3170009461 @default.
- W3084355633 hasRelatedWork W3198115600 @default.
- W3084355633 hasRelatedWork W3201384715 @default.
- W3084355633 hasRelatedWork W3202454231 @default.
- W3084355633 hasRelatedWork W3207755536 @default.
- W3084355633 hasRelatedWork W2973554162 @default.
- W3084355633 isParatext "false" @default.
- W3084355633 isRetracted "false" @default.
- W3084355633 magId "3084355633" @default.
- W3084355633 workType "article" @default.