Matches in SemOpenAlex for { <https://semopenalex.org/work/W3084390771> ?p ?o ?g. }
- W3084390771 abstract "Abstract Deregulation of the protein secretory pathway (PSP) is linked to many hallmarks of cancer, such as promoting tissue invasion and modulating cell-cell signaling. The collection of secreted proteins processed by the PSP, known as the secretome, is often studied due to its potential as a reservoir of tumor biomarkers. However, there has been less focus on the protein components of the secretory machinery itself. We therefore investigated the expression changes in secretory pathway components across many different cancer types. Specifically, we implemented a dual approach involving differential expression analysis and machine learning to identify PSP genes whose expression was associated with key tumor characteristics: mutation of p53, cancer status, and tumor stage. Eight different machine learning algorithms were included in the analysis to enable comparison between methods and to focus on signals that were robust to algorithm type. The machine learning approach was validated by identifying PSP genes known to be regulated by p53, and even outperformed the differential expression analysis approach. Among the different analysis methods and cancer types, the kinesin family members KIF20A and KIF23 were consistently among the top genes associated with malignant transformation or tumor stage. However, unlike most cancer types which exhibited elevated KIF20A expression that remained relatively constant across tumor stages, renal carcinomas displayed a more gradual increase that continued with increasing disease severity. Collectively, our study demonstrates the complementary nature of a combined differential expression and machine learning approach for analyzing gene expression data, and highlights key PSP components relevant to features of tumor pathophysiology that may constitute potential therapeutic targets. Author Summary The secretory pathway is a series of intracellular compartments and enzymes that process and export proteins from the cell to the surrounding environment. Dysfunction of the secretory pathway is associated with many diseases, including cancer, and therefore constitutes a potential target for novel therapeutic strategies. The large number of interacting components that comprise the secretory pathway pose a challenge when attempting to identify where the dysfunction originates and/or how to restore healthy function. To improve our understanding of how the secretory pathway is changed within tumors, we used gene expression data from normal tissue and tumor samples from thousands of individuals which included many different types of cancers. The data was analyzed using various machine learning algorithms which we trained to predict sample characteristics, such as disease severity. This training quantified the relative degree to which each gene was associated with the tumor characteristic, allowing us to predict which secretory pathway components were important for processes such as tumor progression—both within specific cancer types and across many different cancer types. Our approach demonstrated excellent performance compared to traditional gene expression analysis methods and identified several secretory pathway components with strong evidence of involvement in tumor development." @default.
- W3084390771 created "2020-09-14" @default.
- W3084390771 creator A5026153657 @default.
- W3084390771 creator A5029195076 @default.
- W3084390771 creator A5066474918 @default.
- W3084390771 creator A5083238115 @default.
- W3084390771 creator A5090227920 @default.
- W3084390771 date "2020-09-10" @default.
- W3084390771 modified "2023-10-14" @default.
- W3084390771 title "Machine learning-based investigation of the cancer protein secretory pathway" @default.
- W3084390771 cites W1525145973 @default.
- W3084390771 cites W1930624869 @default.
- W3084390771 cites W1943756471 @default.
- W3084390771 cites W1965092590 @default.
- W3084390771 cites W1966680971 @default.
- W3084390771 cites W1988790447 @default.
- W3084390771 cites W1990332595 @default.
- W3084390771 cites W2000302106 @default.
- W3084390771 cites W2009117616 @default.
- W3084390771 cites W2033036939 @default.
- W3084390771 cites W2042304168 @default.
- W3084390771 cites W2056132907 @default.
- W3084390771 cites W2069361749 @default.
- W3084390771 cites W2069649792 @default.
- W3084390771 cites W2072683008 @default.
- W3084390771 cites W2076100752 @default.
- W3084390771 cites W2083260383 @default.
- W3084390771 cites W2084831115 @default.
- W3084390771 cites W2087347434 @default.
- W3084390771 cites W2114104545 @default.
- W3084390771 cites W2117692326 @default.
- W3084390771 cites W2135046866 @default.
- W3084390771 cites W2137219016 @default.
- W3084390771 cites W2138601221 @default.
- W3084390771 cites W2156472837 @default.
- W3084390771 cites W2168631000 @default.
- W3084390771 cites W2194064760 @default.
- W3084390771 cites W2230320310 @default.
- W3084390771 cites W2253060366 @default.
- W3084390771 cites W2497303707 @default.
- W3084390771 cites W2563485231 @default.
- W3084390771 cites W2592727918 @default.
- W3084390771 cites W2607054868 @default.
- W3084390771 cites W2740930667 @default.
- W3084390771 cites W2746577258 @default.
- W3084390771 cites W2766527179 @default.
- W3084390771 cites W2778455075 @default.
- W3084390771 cites W2805627121 @default.
- W3084390771 cites W2915554894 @default.
- W3084390771 cites W2918259518 @default.
- W3084390771 cites W2943539121 @default.
- W3084390771 cites W2947400018 @default.
- W3084390771 cites W2951934944 @default.
- W3084390771 cites W2968752241 @default.
- W3084390771 cites W2989951885 @default.
- W3084390771 cites W2990646888 @default.
- W3084390771 cites W2997477803 @default.
- W3084390771 cites W3001981221 @default.
- W3084390771 cites W3102476541 @default.
- W3084390771 cites W801437949 @default.
- W3084390771 doi "https://doi.org/10.1101/2020.09.09.289413" @default.
- W3084390771 hasPublicationYear "2020" @default.
- W3084390771 type Work @default.
- W3084390771 sameAs 3084390771 @default.
- W3084390771 citedByCount "0" @default.
- W3084390771 crossrefType "posted-content" @default.
- W3084390771 hasAuthorship W3084390771A5026153657 @default.
- W3084390771 hasAuthorship W3084390771A5029195076 @default.
- W3084390771 hasAuthorship W3084390771A5066474918 @default.
- W3084390771 hasAuthorship W3084390771A5083238115 @default.
- W3084390771 hasAuthorship W3084390771A5090227920 @default.
- W3084390771 hasBestOaLocation W30843907711 @default.
- W3084390771 hasConcept C104317684 @default.
- W3084390771 hasConcept C121608353 @default.
- W3084390771 hasConcept C150194340 @default.
- W3084390771 hasConcept C41008148 @default.
- W3084390771 hasConcept C502942594 @default.
- W3084390771 hasConcept C54355233 @default.
- W3084390771 hasConcept C60644358 @default.
- W3084390771 hasConcept C62478195 @default.
- W3084390771 hasConcept C70721500 @default.
- W3084390771 hasConcept C86803240 @default.
- W3084390771 hasConcept C95444343 @default.
- W3084390771 hasConcept C96232424 @default.
- W3084390771 hasConceptScore W3084390771C104317684 @default.
- W3084390771 hasConceptScore W3084390771C121608353 @default.
- W3084390771 hasConceptScore W3084390771C150194340 @default.
- W3084390771 hasConceptScore W3084390771C41008148 @default.
- W3084390771 hasConceptScore W3084390771C502942594 @default.
- W3084390771 hasConceptScore W3084390771C54355233 @default.
- W3084390771 hasConceptScore W3084390771C60644358 @default.
- W3084390771 hasConceptScore W3084390771C62478195 @default.
- W3084390771 hasConceptScore W3084390771C70721500 @default.
- W3084390771 hasConceptScore W3084390771C86803240 @default.
- W3084390771 hasConceptScore W3084390771C95444343 @default.
- W3084390771 hasConceptScore W3084390771C96232424 @default.
- W3084390771 hasLocation W30843907711 @default.
- W3084390771 hasLocation W30843907712 @default.
- W3084390771 hasLocation W30843907713 @default.
- W3084390771 hasOpenAccess W3084390771 @default.