Matches in SemOpenAlex for { <https://semopenalex.org/work/W3084410694> ?p ?o ?g. }
Showing items 1 to 50 of
50
with 100 items per page.
- W3084410694 abstract "<p>Exploring and studying the earth system is becoming increasingly important as the slow depletion of natural resources ensues. An important data source is geophysical data, collected worldwide. After gathering data, it goes through vigorous quality control, pre-processing, and inverse modelling procedures. Such procedures often have manual components, and require a trained geophysicist who understands the data, in order to translate it into useful information regarding the earth system. The sheer amounts of geophysical data collected today makes manual approaches impractical. Therefore, automating as much of the workflow related to geophysical data as possible, would allow novel opportunities such as fully automated geophysical monitoring systems, real-time modeling during data collection, larger geophysical data sets, etc.</p><p>Machine learning has been proposed as a tool for automating workflows related to geophysical data. The field of machine learning encompasses multiple tools, which can be applied in a wide range of geophysical workflows, such as pre-processing, inverse modeling, data exploration etc.</p><p>We present a study where machine learning is applied to automate the time domain induced polarization geophysical workflow. Such induced polarization data requires pre-processing, which is manual in nature. One of the pre-processing steps is that a trained geophysicist inspects the data, and removes so-called non-geologic signals, i.e. noise, which does not represent geological variance. Specifically, a real-world case from Grindsted Denmark is presented. Here, a time domain induced polarization survey was conducted containing seven profiles. Two lines were manually processed and used for supervised training of an artificial neural network. The neural net then automatically processed the remaining profiles of the survey, with satisfactory results. Afterwards, the processed data was inverted, yielding the induced polarization parameters respective to the Cole-Cole model. We discuss the limitations and optimization steps related to training such a classification network.</p>" @default.
- W3084410694 created "2020-09-14" @default.
- W3084410694 creator A5050489763 @default.
- W3084410694 creator A5076681344 @default.
- W3084410694 date "2020-03-23" @default.
- W3084410694 modified "2023-10-18" @default.
- W3084410694 title "Automating the pre-processing of time-domain induced polarization data using machine learning" @default.
- W3084410694 doi "https://doi.org/10.5194/egusphere-egu2020-6922" @default.
- W3084410694 hasPublicationYear "2020" @default.
- W3084410694 type Work @default.
- W3084410694 sameAs 3084410694 @default.
- W3084410694 citedByCount "0" @default.
- W3084410694 crossrefType "posted-content" @default.
- W3084410694 hasAuthorship W3084410694A5050489763 @default.
- W3084410694 hasAuthorship W3084410694A5076681344 @default.
- W3084410694 hasConcept C119857082 @default.
- W3084410694 hasConcept C124101348 @default.
- W3084410694 hasConcept C127313418 @default.
- W3084410694 hasConcept C138827492 @default.
- W3084410694 hasConcept C154945302 @default.
- W3084410694 hasConcept C177212765 @default.
- W3084410694 hasConcept C41008148 @default.
- W3084410694 hasConcept C77088390 @default.
- W3084410694 hasConcept C8058405 @default.
- W3084410694 hasConceptScore W3084410694C119857082 @default.
- W3084410694 hasConceptScore W3084410694C124101348 @default.
- W3084410694 hasConceptScore W3084410694C127313418 @default.
- W3084410694 hasConceptScore W3084410694C138827492 @default.
- W3084410694 hasConceptScore W3084410694C154945302 @default.
- W3084410694 hasConceptScore W3084410694C177212765 @default.
- W3084410694 hasConceptScore W3084410694C41008148 @default.
- W3084410694 hasConceptScore W3084410694C77088390 @default.
- W3084410694 hasConceptScore W3084410694C8058405 @default.
- W3084410694 hasLocation W30844106941 @default.
- W3084410694 hasOpenAccess W3084410694 @default.
- W3084410694 hasPrimaryLocation W30844106941 @default.
- W3084410694 hasRelatedWork W10790760 @default.
- W3084410694 hasRelatedWork W11019033 @default.
- W3084410694 hasRelatedWork W1368232 @default.
- W3084410694 hasRelatedWork W14487044 @default.
- W3084410694 hasRelatedWork W15077099 @default.
- W3084410694 hasRelatedWork W1941230 @default.
- W3084410694 hasRelatedWork W4710831 @default.
- W3084410694 hasRelatedWork W6443329 @default.
- W3084410694 hasRelatedWork W13565840 @default.
- W3084410694 hasRelatedWork W9449197 @default.
- W3084410694 isParatext "false" @default.
- W3084410694 isRetracted "false" @default.
- W3084410694 magId "3084410694" @default.
- W3084410694 workType "article" @default.