Matches in SemOpenAlex for { <https://semopenalex.org/work/W3084422453> ?p ?o ?g. }
- W3084422453 endingPage "105742" @default.
- W3084422453 startingPage "105742" @default.
- W3084422453 abstract "Abstract Patients with end-stage renal diseases (ESRD) require specific health cares as the accumulation of toxins due to the lack of kidney functionality would affect their lives. However, the mortality rate is still high due to cardiovascular diseases, socks, etc. A majority of patients with chronic kidney disease (CKD) require hemodialysis services. Blood purifying membranes, as the main component of hemodialysis setups, however, still suffer from lack of optimum biocompatibility, which results in morbidity and mortality of hemodialysis service receiving patients. The goal of the present case study is to have an in-depth understanding of the current blood-hemodialysis membrane interactions occurring during hemodialysis sessions using poly (aryl ether sulfone)-poly (vinyl pyrrolidone) (PAES-PVP) membrane. Attenuated total reflectance-Fourier transmission infrared (ATR-FTIR) spectroscopy, Raman spectroscopy, and solid-state nuclear magnetic resonance (SSNMR) spectroscopy were used to assess the initial chemical structure of the PAES-PVP membrane along with the variations after with the infections with human blood. Furthermore, scanning electron microscopy (SEM) and Transition electron microscopy (TEM) were used to visualize the structural variation of the membrane, blood aggregations, and blood clots on the membrane surface. Besides, Molecular dynamics (MD) simulation was used to assess the interaction of PAES-PVP with major human blood proteins, in terms of interaction energy, which is a novel contribution to the area. The macromolecules (human serum albumin (HSA), human serum transferrin (TRF), and human fibrinogen (HFG)) were chosen from the plasma protein component. These protein structures were chosen based on their different molecular size. Three advanced spectroscopy techniques and two advanced visualization techniques were used for the assessment of the membranes. Spectroscopy studies revealed amine related peak displacement and intensity shifts as indices for attachment of biological species to the polymeric membrane surfaces. Raman peaks around 370, 798, and 1299 cm−1, which experienced significant shifts that were related to carbon-nitrogen and sulfur-oxygen bonds due to protein adhesion. Visualization techniques illustrated blood protein fouling patterns and extracellular vesicles’ presence in the pore structures into membranes. The findings highlight the importance of whole structure biocompatibility improvement, rather than only focusing on surface modifications of hemodialysis membranes. Molecular dynamics simulation assessment showed various interaction behaviors for different proteins suggesting molecular weight and active residues of the protein macromolecules play an important role in interacting with polymeric structure. FB had the highest interaction (4,274,749.07 kcal/mol) and binding (10,370.90 kcal/mol) energy with the PAES-PVP structure. TRF owned the lowest interaction energy with respect to its lower molecular weight and fewer active residue count." @default.
- W3084422453 created "2020-09-14" @default.
- W3084422453 creator A5005568337 @default.
- W3084422453 creator A5057348971 @default.
- W3084422453 creator A5058889895 @default.
- W3084422453 creator A5090658611 @default.
- W3084422453 date "2020-12-01" @default.
- W3084422453 modified "2023-09-27" @default.
- W3084422453 title "A case study of poly (aryl ether sulfone) hemodialysis membrane interactions with human blood: Molecular dynamics simulation and experimental analyses" @default.
- W3084422453 cites W1826491522 @default.
- W3084422453 cites W1865779570 @default.
- W3084422453 cites W1965602641 @default.
- W3084422453 cites W1972796626 @default.
- W3084422453 cites W1981923760 @default.
- W3084422453 cites W1983863542 @default.
- W3084422453 cites W1992655067 @default.
- W3084422453 cites W2002325434 @default.
- W3084422453 cites W2013034866 @default.
- W3084422453 cites W2013636181 @default.
- W3084422453 cites W2014699651 @default.
- W3084422453 cites W2016623272 @default.
- W3084422453 cites W2016972840 @default.
- W3084422453 cites W2019637120 @default.
- W3084422453 cites W2024988100 @default.
- W3084422453 cites W2035208568 @default.
- W3084422453 cites W2038324181 @default.
- W3084422453 cites W2038707973 @default.
- W3084422453 cites W2045381422 @default.
- W3084422453 cites W2047761106 @default.
- W3084422453 cites W2057910069 @default.
- W3084422453 cites W2059841580 @default.
- W3084422453 cites W2061713285 @default.
- W3084422453 cites W2066704958 @default.
- W3084422453 cites W2070272237 @default.
- W3084422453 cites W2071651272 @default.
- W3084422453 cites W2077188561 @default.
- W3084422453 cites W2080511631 @default.
- W3084422453 cites W2085822586 @default.
- W3084422453 cites W2086932926 @default.
- W3084422453 cites W2088203374 @default.
- W3084422453 cites W2088862856 @default.
- W3084422453 cites W2091644051 @default.
- W3084422453 cites W2131847060 @default.
- W3084422453 cites W2134285663 @default.
- W3084422453 cites W2134607638 @default.
- W3084422453 cites W2145632027 @default.
- W3084422453 cites W2162367230 @default.
- W3084422453 cites W2162838846 @default.
- W3084422453 cites W2274723927 @default.
- W3084422453 cites W2321851466 @default.
- W3084422453 cites W2323456511 @default.
- W3084422453 cites W2607699548 @default.
- W3084422453 cites W2612293302 @default.
- W3084422453 cites W2777301978 @default.
- W3084422453 cites W2787022210 @default.
- W3084422453 cites W2794870418 @default.
- W3084422453 cites W2895943570 @default.
- W3084422453 cites W3009136017 @default.
- W3084422453 cites W3044547963 @default.
- W3084422453 cites W3100741926 @default.
- W3084422453 cites W4238768614 @default.
- W3084422453 cites W564116775 @default.
- W3084422453 cites W813284247 @default.
- W3084422453 doi "https://doi.org/10.1016/j.cmpb.2020.105742" @default.
- W3084422453 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32947069" @default.
- W3084422453 hasPublicationYear "2020" @default.
- W3084422453 type Work @default.
- W3084422453 sameAs 3084422453 @default.
- W3084422453 citedByCount "24" @default.
- W3084422453 countsByYear W30844224532021 @default.
- W3084422453 countsByYear W30844224532022 @default.
- W3084422453 countsByYear W30844224532023 @default.
- W3084422453 crossrefType "journal-article" @default.
- W3084422453 hasAuthorship W3084422453A5005568337 @default.
- W3084422453 hasAuthorship W3084422453A5057348971 @default.
- W3084422453 hasAuthorship W3084422453A5058889895 @default.
- W3084422453 hasAuthorship W3084422453A5090658611 @default.
- W3084422453 hasConcept C141071460 @default.
- W3084422453 hasConcept C147597530 @default.
- W3084422453 hasConcept C178790620 @default.
- W3084422453 hasConcept C185592680 @default.
- W3084422453 hasConcept C188027245 @default.
- W3084422453 hasConcept C2778063415 @default.
- W3084422453 hasConcept C2778806918 @default.
- W3084422453 hasConcept C2780263894 @default.
- W3084422453 hasConcept C2780407432 @default.
- W3084422453 hasConcept C2781076698 @default.
- W3084422453 hasConcept C3020437955 @default.
- W3084422453 hasConcept C41625074 @default.
- W3084422453 hasConcept C42407357 @default.
- W3084422453 hasConcept C55493867 @default.
- W3084422453 hasConcept C59593255 @default.
- W3084422453 hasConcept C71924100 @default.
- W3084422453 hasConceptScore W3084422453C141071460 @default.
- W3084422453 hasConceptScore W3084422453C147597530 @default.
- W3084422453 hasConceptScore W3084422453C178790620 @default.
- W3084422453 hasConceptScore W3084422453C185592680 @default.
- W3084422453 hasConceptScore W3084422453C188027245 @default.