Matches in SemOpenAlex for { <https://semopenalex.org/work/W3084434814> ?p ?o ?g. }
- W3084434814 endingPage "167720" @default.
- W3084434814 startingPage "167711" @default.
- W3084434814 abstract "The antibiotic resistance of bacterial pathogens has become one of the most serious global health issues due to misusing and overusing of antibiotics. Recently, different technologies were developed to determine bacteria susceptibility towards antibiotics; however, each of these technologies has its advantages and limitations in clinical applications. In this contribution, we aim to assess and automate the detection of bacterial susceptibilities towards three antibiotics; i.e. ciprofloxacin, cefotaxime and piperacillin using a combination of image processing and machine learning algorithms. Therein, microscopic images were collected from different E. coli strains, then the convolutional neural network U-Net was implemented to segment the areas showing bacteria. Subsequently, the encoder part of the trained U-Net was utilized as a feature extractor, and the U-Net bottleneck features were utilized to predict the antibiotic susceptibility of E. coli strains using a one-class support vector machine (OCSVM). This one-class model was always trained on images of untreated controls of each bacterial strain while the image labels of treated bacteria were predicted as control or non-control images. If an image of treated bacteria is predicted as control, we assume that these bacteria resist this antibiotic. In contrast, the sensitive bacteria show different morphology of the control bacteria; therefore, images collected from these treated bacteria are expected to be classified as non-control. Our results showed 83% area under the receiver operating characteristic (ROC) curve when OCSVM models were built using the U-Net bottleneck features of control bacteria images only. Additionally, the mean sensitivities of these one-class models are 91.67% and 86.61% for cefotaxime and piperacillin; respectively. The mean sensitivity for the prediction of ciprofloxacin is only 59.72% as the bacteria morphology was not fully detected by the proposed method." @default.
- W3084434814 created "2020-09-14" @default.
- W3084434814 creator A5005568675 @default.
- W3084434814 creator A5030640401 @default.
- W3084434814 creator A5034502482 @default.
- W3084434814 creator A5048291863 @default.
- W3084434814 creator A5053417470 @default.
- W3084434814 creator A5081201509 @default.
- W3084434814 creator A5090357784 @default.
- W3084434814 date "2020-01-01" @default.
- W3084434814 modified "2023-10-15" @default.
- W3084434814 title "Predictive Modeling of Antibiotic Susceptibility in <i>E. Coli</i> Strains Using the U-Net Network and One-Class Classification" @default.
- W3084434814 cites W1976468890 @default.
- W3084434814 cites W1993903946 @default.
- W3084434814 cites W2044465660 @default.
- W3084434814 cites W2052507258 @default.
- W3084434814 cites W2109433105 @default.
- W3084434814 cites W2118115068 @default.
- W3084434814 cites W2137130182 @default.
- W3084434814 cites W2167279371 @default.
- W3084434814 cites W2270110122 @default.
- W3084434814 cites W2342249984 @default.
- W3084434814 cites W2460894723 @default.
- W3084434814 cites W2541243701 @default.
- W3084434814 cites W2551267404 @default.
- W3084434814 cites W2559452838 @default.
- W3084434814 cites W2590998239 @default.
- W3084434814 cites W2606025098 @default.
- W3084434814 cites W2609966493 @default.
- W3084434814 cites W2611108914 @default.
- W3084434814 cites W2752086820 @default.
- W3084434814 cites W2767779691 @default.
- W3084434814 cites W2779575314 @default.
- W3084434814 cites W2801062756 @default.
- W3084434814 cites W2897587353 @default.
- W3084434814 cites W2901013864 @default.
- W3084434814 cites W2951691717 @default.
- W3084434814 cites W2952668074 @default.
- W3084434814 cites W2966393890 @default.
- W3084434814 cites W2982482221 @default.
- W3084434814 doi "https://doi.org/10.1109/access.2020.3022829" @default.
- W3084434814 hasPublicationYear "2020" @default.
- W3084434814 type Work @default.
- W3084434814 sameAs 3084434814 @default.
- W3084434814 citedByCount "4" @default.
- W3084434814 countsByYear W30844348142021 @default.
- W3084434814 countsByYear W30844348142022 @default.
- W3084434814 countsByYear W30844348142023 @default.
- W3084434814 crossrefType "journal-article" @default.
- W3084434814 hasAuthorship W3084434814A5005568675 @default.
- W3084434814 hasAuthorship W3084434814A5030640401 @default.
- W3084434814 hasAuthorship W3084434814A5034502482 @default.
- W3084434814 hasAuthorship W3084434814A5048291863 @default.
- W3084434814 hasAuthorship W3084434814A5053417470 @default.
- W3084434814 hasAuthorship W3084434814A5081201509 @default.
- W3084434814 hasAuthorship W3084434814A5090357784 @default.
- W3084434814 hasBestOaLocation W30844348141 @default.
- W3084434814 hasConcept C119857082 @default.
- W3084434814 hasConcept C149635348 @default.
- W3084434814 hasConcept C153180895 @default.
- W3084434814 hasConcept C154945302 @default.
- W3084434814 hasConcept C2778719061 @default.
- W3084434814 hasConcept C2780513914 @default.
- W3084434814 hasConcept C41008148 @default.
- W3084434814 hasConcept C501593827 @default.
- W3084434814 hasConcept C50644808 @default.
- W3084434814 hasConcept C523546767 @default.
- W3084434814 hasConcept C54355233 @default.
- W3084434814 hasConcept C86803240 @default.
- W3084434814 hasConcept C89423630 @default.
- W3084434814 hasConceptScore W3084434814C119857082 @default.
- W3084434814 hasConceptScore W3084434814C149635348 @default.
- W3084434814 hasConceptScore W3084434814C153180895 @default.
- W3084434814 hasConceptScore W3084434814C154945302 @default.
- W3084434814 hasConceptScore W3084434814C2778719061 @default.
- W3084434814 hasConceptScore W3084434814C2780513914 @default.
- W3084434814 hasConceptScore W3084434814C41008148 @default.
- W3084434814 hasConceptScore W3084434814C501593827 @default.
- W3084434814 hasConceptScore W3084434814C50644808 @default.
- W3084434814 hasConceptScore W3084434814C523546767 @default.
- W3084434814 hasConceptScore W3084434814C54355233 @default.
- W3084434814 hasConceptScore W3084434814C86803240 @default.
- W3084434814 hasConceptScore W3084434814C89423630 @default.
- W3084434814 hasFunder F4320316264 @default.
- W3084434814 hasFunder F4320320879 @default.
- W3084434814 hasFunder F4320321114 @default.
- W3084434814 hasFunder F4320338080 @default.
- W3084434814 hasLocation W30844348141 @default.
- W3084434814 hasOpenAccess W3084434814 @default.
- W3084434814 hasPrimaryLocation W30844348141 @default.
- W3084434814 hasRelatedWork W1556946708 @default.
- W3084434814 hasRelatedWork W1657880117 @default.
- W3084434814 hasRelatedWork W1984247691 @default.
- W3084434814 hasRelatedWork W2137914902 @default.
- W3084434814 hasRelatedWork W2317727640 @default.
- W3084434814 hasRelatedWork W2397096737 @default.
- W3084434814 hasRelatedWork W250197373 @default.
- W3084434814 hasRelatedWork W2523104476 @default.