Matches in SemOpenAlex for { <https://semopenalex.org/work/W3084540266> ?p ?o ?g. }
- W3084540266 endingPage "177" @default.
- W3084540266 startingPage "170" @default.
- W3084540266 abstract "Artificial intelligence and machine learning based approaches are increasingly finding their way into various areas of nuclear medicine imaging. With the technical development of new methods and the expansion to new fields of application, this trend is likely to become even more pronounced in future. Possible means of application range from automated image reading and classification to correlation with clinical outcomes and to technological applications in image processing and reconstruction. In the context of tumor imaging, that is, predominantly FDG or PSMA PET imaging but also bone scintigraphy, artificial intelligence approaches can be used to quantify the whole-body tumor volume, for the segmentation and classification of pathological foci or to facilitate the diagnosis of micro-metastases. More advanced applications aim at the correlation of image features that are derived by artificial intelligence with clinical endpoints, for example, whole-body tumor volume with overall survival. In nuclear medicine imaging of benign diseases, artificial intelligence methods are predominantly used for automated and/or facilitated image classification and clinical decision making. Automated feature selection, segmentation and classification of myocardial perfusion scintigraphy can help in identifying patients that would benefit from intervention and to forecast clinical prognosis. Automated reporting of neurodegenerative diseases such as Alzheimer's disease might be extended to early diagnosis—being of special interest, if targeted treatment options might become available. Technological approaches include artificial intelligence-based attenuation correction of PET images, image reconstruction or anatomical landmarking. Attenuation correction is of special interest for avoiding the need of a coregistered CT scan, in the process of image reconstruction artefacts might be reduced, or ultra low-dose PET images might be denoised. The development of accurate ultra low-dose PET imaging might broaden the method's applicability, for example, toward oncologic PET screening. Most artificial intelligence approaches in nuclear medicine imaging are still in early stages of development, further improvements are necessary for broad clinical applications. In this review, we describe the current trends in the context fields of body oncology, cardiac imaging, and neuroimaging while an additional section puts emphasis on technological trends. Our aim is not only to describe currently available methods, but also to place a special focus on the description of possible future developments." @default.
- W3084540266 created "2020-09-21" @default.
- W3084540266 creator A5006321851 @default.
- W3084540266 creator A5006438674 @default.
- W3084540266 creator A5017131649 @default.
- W3084540266 creator A5040413251 @default.
- W3084540266 creator A5047137012 @default.
- W3084540266 date "2021-03-01" @default.
- W3084540266 modified "2023-10-16" @default.
- W3084540266 title "Artificial Intelligence and Machine Learning in Nuclear Medicine: Future Perspectives" @default.
- W3084540266 cites W1015247680 @default.
- W3084540266 cites W130099911 @default.
- W3084540266 cites W1982620463 @default.
- W3084540266 cites W2030622127 @default.
- W3084540266 cites W2031917779 @default.
- W3084540266 cites W2069872397 @default.
- W3084540266 cites W2121827537 @default.
- W3084540266 cites W2128225881 @default.
- W3084540266 cites W2155263737 @default.
- W3084540266 cites W2159044597 @default.
- W3084540266 cites W2183178428 @default.
- W3084540266 cites W2267700533 @default.
- W3084540266 cites W2278392405 @default.
- W3084540266 cites W2366536035 @default.
- W3084540266 cites W2396597461 @default.
- W3084540266 cites W2510806376 @default.
- W3084540266 cites W2548617625 @default.
- W3084540266 cites W2566406401 @default.
- W3084540266 cites W2601711680 @default.
- W3084540266 cites W2651525809 @default.
- W3084540266 cites W2765106267 @default.
- W3084540266 cites W2789532252 @default.
- W3084540266 cites W2790606087 @default.
- W3084540266 cites W2793804994 @default.
- W3084540266 cites W2797624406 @default.
- W3084540266 cites W2804280357 @default.
- W3084540266 cites W2892337247 @default.
- W3084540266 cites W2902487187 @default.
- W3084540266 cites W2903148078 @default.
- W3084540266 cites W2907547898 @default.
- W3084540266 cites W2909553464 @default.
- W3084540266 cites W2916257687 @default.
- W3084540266 cites W2917236264 @default.
- W3084540266 cites W2922269098 @default.
- W3084540266 cites W2924617625 @default.
- W3084540266 cites W2928374940 @default.
- W3084540266 cites W2947590149 @default.
- W3084540266 cites W2949076424 @default.
- W3084540266 cites W2950945543 @default.
- W3084540266 cites W2958646971 @default.
- W3084540266 cites W2963385325 @default.
- W3084540266 cites W2964149875 @default.
- W3084540266 cites W2971563774 @default.
- W3084540266 cites W2980663762 @default.
- W3084540266 cites W2981548686 @default.
- W3084540266 cites W2982334763 @default.
- W3084540266 cites W2992749535 @default.
- W3084540266 cites W2993002800 @default.
- W3084540266 cites W2994169380 @default.
- W3084540266 cites W2994824962 @default.
- W3084540266 cites W2998091202 @default.
- W3084540266 cites W2998494322 @default.
- W3084540266 cites W2999265038 @default.
- W3084540266 cites W2999625775 @default.
- W3084540266 cites W3006500278 @default.
- W3084540266 cites W3012665335 @default.
- W3084540266 cites W3012827461 @default.
- W3084540266 cites W3016416473 @default.
- W3084540266 cites W3019914727 @default.
- W3084540266 cites W3020301997 @default.
- W3084540266 cites W3026423518 @default.
- W3084540266 cites W3027722627 @default.
- W3084540266 cites W3028324116 @default.
- W3084540266 cites W3038705451 @default.
- W3084540266 cites W3040097601 @default.
- W3084540266 cites W4211105004 @default.
- W3084540266 doi "https://doi.org/10.1053/j.semnuclmed.2020.08.003" @default.
- W3084540266 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33509373" @default.
- W3084540266 hasPublicationYear "2021" @default.
- W3084540266 type Work @default.
- W3084540266 sameAs 3084540266 @default.
- W3084540266 citedByCount "47" @default.
- W3084540266 countsByYear W30845402662021 @default.
- W3084540266 countsByYear W30845402662022 @default.
- W3084540266 countsByYear W30845402662023 @default.
- W3084540266 crossrefType "journal-article" @default.
- W3084540266 hasAuthorship W3084540266A5006321851 @default.
- W3084540266 hasAuthorship W3084540266A5006438674 @default.
- W3084540266 hasAuthorship W3084540266A5017131649 @default.
- W3084540266 hasAuthorship W3084540266A5040413251 @default.
- W3084540266 hasAuthorship W3084540266A5047137012 @default.
- W3084540266 hasConcept C115961682 @default.
- W3084540266 hasConcept C119857082 @default.
- W3084540266 hasConcept C123688308 @default.
- W3084540266 hasConcept C126838900 @default.
- W3084540266 hasConcept C151730666 @default.
- W3084540266 hasConcept C153180895 @default.
- W3084540266 hasConcept C154945302 @default.