Matches in SemOpenAlex for { <https://semopenalex.org/work/W3084624567> ?p ?o ?g. }
- W3084624567 endingPage "102859" @default.
- W3084624567 startingPage "102859" @default.
- W3084624567 abstract "Recently, the kernel based constrained adaptive filtering algorithm has attracted a lot of attentions because of its robustness and superiority over traditional methods. As two classic kernel based algorithms, both constrained maximum correntropy criterion (CMCC) and constrained minimum error entropy (CMEE) have shown their superiorities in the case of non-Gaussian noise. However, both algorithms use only one kernel as the kernel function. To further improve the performance of the kernel based adaptive filtering algorithms, we first define the mixture kernel risk-sensitive loss (MKRSL) and study its properties. Then, we apply it to the constrained adaptive filtering and propose a novel constrained minimum MKRSL (CMM-KRSL) algorithm in this paper. Furthermore, we present the performance analysis of the CMM-KRSL algorithm, and provide the stability condition and the theoretical mean square deviation (MSD). Finally, we validate the accuracy of performance analysis and the superiorities of CMM-KRSL by simulations." @default.
- W3084624567 created "2020-09-21" @default.
- W3084624567 creator A5012795428 @default.
- W3084624567 creator A5020093525 @default.
- W3084624567 creator A5028976597 @default.
- W3084624567 date "2020-12-01" @default.
- W3084624567 modified "2023-10-15" @default.
- W3084624567 title "Robust constrained minimum mixture kernel risk-sensitive loss algorithm for adaptive filtering" @default.
- W3084624567 cites W1978604122 @default.
- W3084624567 cites W1993405482 @default.
- W3084624567 cites W2044289603 @default.
- W3084624567 cites W2135160607 @default.
- W3084624567 cites W2139267014 @default.
- W3084624567 cites W2500157231 @default.
- W3084624567 cites W2528194423 @default.
- W3084624567 cites W2606962009 @default.
- W3084624567 cites W2782618922 @default.
- W3084624567 cites W2789481185 @default.
- W3084624567 cites W2791349464 @default.
- W3084624567 cites W2885745818 @default.
- W3084624567 cites W2888841704 @default.
- W3084624567 cites W2895711555 @default.
- W3084624567 cites W2897533873 @default.
- W3084624567 cites W2899510438 @default.
- W3084624567 cites W2901384774 @default.
- W3084624567 cites W2911181712 @default.
- W3084624567 cites W2912349489 @default.
- W3084624567 cites W2944846513 @default.
- W3084624567 cites W2950159681 @default.
- W3084624567 cites W2954678237 @default.
- W3084624567 cites W2963134661 @default.
- W3084624567 cites W2963137067 @default.
- W3084624567 cites W3024853581 @default.
- W3084624567 cites W4234397156 @default.
- W3084624567 doi "https://doi.org/10.1016/j.dsp.2020.102859" @default.
- W3084624567 hasPublicationYear "2020" @default.
- W3084624567 type Work @default.
- W3084624567 sameAs 3084624567 @default.
- W3084624567 citedByCount "6" @default.
- W3084624567 countsByYear W30846245672022 @default.
- W3084624567 countsByYear W30846245672023 @default.
- W3084624567 crossrefType "journal-article" @default.
- W3084624567 hasAuthorship W3084624567A5012795428 @default.
- W3084624567 hasAuthorship W3084624567A5020093525 @default.
- W3084624567 hasAuthorship W3084624567A5028976597 @default.
- W3084624567 hasConcept C102248274 @default.
- W3084624567 hasConcept C104317684 @default.
- W3084624567 hasConcept C106131492 @default.
- W3084624567 hasConcept C11413529 @default.
- W3084624567 hasConcept C114614502 @default.
- W3084624567 hasConcept C121332964 @default.
- W3084624567 hasConcept C122280245 @default.
- W3084624567 hasConcept C12267149 @default.
- W3084624567 hasConcept C126255220 @default.
- W3084624567 hasConcept C13107197 @default.
- W3084624567 hasConcept C154945302 @default.
- W3084624567 hasConcept C163716315 @default.
- W3084624567 hasConcept C185592680 @default.
- W3084624567 hasConcept C195699287 @default.
- W3084624567 hasConcept C31972630 @default.
- W3084624567 hasConcept C33923547 @default.
- W3084624567 hasConcept C36390408 @default.
- W3084624567 hasConcept C41008148 @default.
- W3084624567 hasConcept C55493867 @default.
- W3084624567 hasConcept C62520636 @default.
- W3084624567 hasConcept C63479239 @default.
- W3084624567 hasConcept C7218915 @default.
- W3084624567 hasConcept C74193536 @default.
- W3084624567 hasConceptScore W3084624567C102248274 @default.
- W3084624567 hasConceptScore W3084624567C104317684 @default.
- W3084624567 hasConceptScore W3084624567C106131492 @default.
- W3084624567 hasConceptScore W3084624567C11413529 @default.
- W3084624567 hasConceptScore W3084624567C114614502 @default.
- W3084624567 hasConceptScore W3084624567C121332964 @default.
- W3084624567 hasConceptScore W3084624567C122280245 @default.
- W3084624567 hasConceptScore W3084624567C12267149 @default.
- W3084624567 hasConceptScore W3084624567C126255220 @default.
- W3084624567 hasConceptScore W3084624567C13107197 @default.
- W3084624567 hasConceptScore W3084624567C154945302 @default.
- W3084624567 hasConceptScore W3084624567C163716315 @default.
- W3084624567 hasConceptScore W3084624567C185592680 @default.
- W3084624567 hasConceptScore W3084624567C195699287 @default.
- W3084624567 hasConceptScore W3084624567C31972630 @default.
- W3084624567 hasConceptScore W3084624567C33923547 @default.
- W3084624567 hasConceptScore W3084624567C36390408 @default.
- W3084624567 hasConceptScore W3084624567C41008148 @default.
- W3084624567 hasConceptScore W3084624567C55493867 @default.
- W3084624567 hasConceptScore W3084624567C62520636 @default.
- W3084624567 hasConceptScore W3084624567C63479239 @default.
- W3084624567 hasConceptScore W3084624567C7218915 @default.
- W3084624567 hasConceptScore W3084624567C74193536 @default.
- W3084624567 hasFunder F4320321001 @default.
- W3084624567 hasLocation W30846245671 @default.
- W3084624567 hasOpenAccess W3084624567 @default.
- W3084624567 hasPrimaryLocation W30846245671 @default.
- W3084624567 hasRelatedWork W2106103042 @default.
- W3084624567 hasRelatedWork W2120315477 @default.
- W3084624567 hasRelatedWork W2417556355 @default.