Matches in SemOpenAlex for { <https://semopenalex.org/work/W3084635648> ?p ?o ?g. }
- W3084635648 endingPage "1591" @default.
- W3084635648 startingPage "1591" @default.
- W3084635648 abstract "In this paper, a finite volume element (FVE) method is proposed for the time fractional Sobolev equations with the Caputo time fractional derivative. Based on the L1-formula and the Crank–Nicolson scheme, a fully discrete Crank–Nicolson FVE scheme is established by using an interpolation operator Ih*. The unconditional stability result and the optimal a priori error estimate in the L2(Ω)-norm for the Crank–Nicolson FVE scheme are obtained by using the direct recursive method. Finally, some numerical results are given to verify the time and space convergence accuracy, and to examine the feasibility and effectiveness for the proposed scheme." @default.
- W3084635648 created "2020-09-21" @default.
- W3084635648 creator A5013165056 @default.
- W3084635648 creator A5030223073 @default.
- W3084635648 creator A5060717803 @default.
- W3084635648 creator A5079134023 @default.
- W3084635648 date "2020-09-16" @default.
- W3084635648 modified "2023-10-02" @default.
- W3084635648 title "A Crank–Nicolson Finite Volume Element Method for Time Fractional Sobolev Equations on Triangular Grids" @default.
- W3084635648 cites W1969312973 @default.
- W3084635648 cites W1970546830 @default.
- W3084635648 cites W1986267641 @default.
- W3084635648 cites W2032474987 @default.
- W3084635648 cites W2043080303 @default.
- W3084635648 cites W2122264603 @default.
- W3084635648 cites W2133635929 @default.
- W3084635648 cites W2161513111 @default.
- W3084635648 cites W2165076033 @default.
- W3084635648 cites W2513307962 @default.
- W3084635648 cites W2592797361 @default.
- W3084635648 cites W2612471483 @default.
- W3084635648 cites W2613087776 @default.
- W3084635648 cites W2767759558 @default.
- W3084635648 cites W2789399712 @default.
- W3084635648 cites W2789967849 @default.
- W3084635648 cites W2792503105 @default.
- W3084635648 cites W2799821673 @default.
- W3084635648 cites W2804570618 @default.
- W3084635648 cites W2806868147 @default.
- W3084635648 cites W2898349759 @default.
- W3084635648 cites W2909211007 @default.
- W3084635648 cites W2946732541 @default.
- W3084635648 cites W2947637492 @default.
- W3084635648 cites W2954559948 @default.
- W3084635648 cites W2955909043 @default.
- W3084635648 cites W2962854992 @default.
- W3084635648 cites W2964326636 @default.
- W3084635648 cites W2970077600 @default.
- W3084635648 cites W2981663683 @default.
- W3084635648 cites W2990768640 @default.
- W3084635648 cites W3018009055 @default.
- W3084635648 cites W3036538818 @default.
- W3084635648 cites W3043208752 @default.
- W3084635648 doi "https://doi.org/10.3390/math8091591" @default.
- W3084635648 hasPublicationYear "2020" @default.
- W3084635648 type Work @default.
- W3084635648 sameAs 3084635648 @default.
- W3084635648 citedByCount "12" @default.
- W3084635648 countsByYear W30846356482021 @default.
- W3084635648 countsByYear W30846356482022 @default.
- W3084635648 countsByYear W30846356482023 @default.
- W3084635648 crossrefType "journal-article" @default.
- W3084635648 hasAuthorship W3084635648A5013165056 @default.
- W3084635648 hasAuthorship W3084635648A5030223073 @default.
- W3084635648 hasAuthorship W3084635648A5060717803 @default.
- W3084635648 hasAuthorship W3084635648A5079134023 @default.
- W3084635648 hasBestOaLocation W30846356481 @default.
- W3084635648 hasConcept C111472728 @default.
- W3084635648 hasConcept C112972136 @default.
- W3084635648 hasConcept C119857082 @default.
- W3084635648 hasConcept C121332964 @default.
- W3084635648 hasConcept C121684516 @default.
- W3084635648 hasConcept C134306372 @default.
- W3084635648 hasConcept C135628077 @default.
- W3084635648 hasConcept C137800194 @default.
- W3084635648 hasConcept C138885662 @default.
- W3084635648 hasConcept C154249771 @default.
- W3084635648 hasConcept C162324750 @default.
- W3084635648 hasConcept C17744445 @default.
- W3084635648 hasConcept C180931078 @default.
- W3084635648 hasConcept C191795146 @default.
- W3084635648 hasConcept C199539241 @default.
- W3084635648 hasConcept C2777303404 @default.
- W3084635648 hasConcept C28826006 @default.
- W3084635648 hasConcept C33923547 @default.
- W3084635648 hasConcept C41008148 @default.
- W3084635648 hasConcept C502989409 @default.
- W3084635648 hasConcept C50478463 @default.
- W3084635648 hasConcept C50522688 @default.
- W3084635648 hasConcept C57879066 @default.
- W3084635648 hasConcept C75553542 @default.
- W3084635648 hasConcept C77618280 @default.
- W3084635648 hasConcept C97355855 @default.
- W3084635648 hasConcept C99730327 @default.
- W3084635648 hasConceptScore W3084635648C111472728 @default.
- W3084635648 hasConceptScore W3084635648C112972136 @default.
- W3084635648 hasConceptScore W3084635648C119857082 @default.
- W3084635648 hasConceptScore W3084635648C121332964 @default.
- W3084635648 hasConceptScore W3084635648C121684516 @default.
- W3084635648 hasConceptScore W3084635648C134306372 @default.
- W3084635648 hasConceptScore W3084635648C135628077 @default.
- W3084635648 hasConceptScore W3084635648C137800194 @default.
- W3084635648 hasConceptScore W3084635648C138885662 @default.
- W3084635648 hasConceptScore W3084635648C154249771 @default.
- W3084635648 hasConceptScore W3084635648C162324750 @default.
- W3084635648 hasConceptScore W3084635648C17744445 @default.
- W3084635648 hasConceptScore W3084635648C180931078 @default.
- W3084635648 hasConceptScore W3084635648C191795146 @default.