Matches in SemOpenAlex for { <https://semopenalex.org/work/W3084773904> ?p ?o ?g. }
- W3084773904 endingPage "190201" @default.
- W3084773904 startingPage "190201" @default.
- W3084773904 abstract "With the advent of global warming and energy crisis, the search for renewable energy to reduce carbon emissions has become one of the most urgent challenges. Ithas become a research hotspot to collect or harvest various mechanical energy in nature and convert it into electric energy. Vibration is a common form of mechanical movement in our daily life. It is visible both on most working machines and in nature and is a type of potential energy. There are several methods that can convert such mechanical energy into electric energy. Triboelectric nanogenerator (TENG) based on the principle of contact electrification and electrostatic induction which first appeared in 2012 by Zhonglin Wang provides a feasible method of efficiently collecting the vibrational energy with different vibrating frequencies. In this paper, a contact-separation mode of TENG is designed and implemented. The voltage- quantity of charge- distance(V-Q-x)relation of TENG is calculated. During the experiment, the factors such as load resistance, vibration frequency, etc. which affect the output performance, are considered and analyzed. An electrically driven crank-connecting rod mechanism is employed to provide the vibration source with adjustable frequency in a range of 1-6 Hz. The result shows that the amount of charge transfer in each working cycle remains almost unchanged, while the voltage and current increase with frequency increasing. When the frequency is 5 Hz, the best power matching resistance of the TENG is about 33 MΩ and the maximum output power reaches 0.5 mW. For a further study, a COMSOL software is used to simulate the distribution rule and variation rule of the electric potential in the contact-separation process, then the theoretical charge density and the experimental charge density on the polymer surface are compared and analyzed in order to provide theoretical and practical support for the design of TENG with collected vibration energy and self-powered vibration sensor. The result shows that the electric potential is proportional to the distance between two friction layers. While as the distance between two friction layers increases, the electric potential and the charge density both show a tendency to concentrate in the middle of the friction layer. The huge difference between experimental result and the simulation predicts thatmuch work should be done continually to improve the output of the TENG. Finally, the obtained results conduce to understanding the contact electrification and electrostatic induction mechanism and also provide a new method of harvesting the vibration energy." @default.
- W3084773904 created "2020-09-21" @default.
- W3084773904 creator A5001191710 @default.
- W3084773904 creator A5018750403 @default.
- W3084773904 creator A5021220105 @default.
- W3084773904 creator A5030093874 @default.
- W3084773904 creator A5034348704 @default.
- W3084773904 creator A5051363890 @default.
- W3084773904 creator A5052957111 @default.
- W3084773904 creator A5076667064 @default.
- W3084773904 date "2019-01-01" @default.
- W3084773904 modified "2023-10-01" @default.
- W3084773904 title "Design and output performance of vibration energy harvesting triboelectric nanogenerator" @default.
- W3084773904 cites W1874658364 @default.
- W3084773904 cites W1993070126 @default.
- W3084773904 cites W2037858115 @default.
- W3084773904 cites W2080409247 @default.
- W3084773904 cites W2173762328 @default.
- W3084773904 cites W2181416544 @default.
- W3084773904 cites W2312281914 @default.
- W3084773904 cites W2336682422 @default.
- W3084773904 cites W2345384206 @default.
- W3084773904 cites W2599096744 @default.
- W3084773904 cites W2602137662 @default.
- W3084773904 cites W2615287078 @default.
- W3084773904 cites W2739548220 @default.
- W3084773904 cites W2766105712 @default.
- W3084773904 cites W2773279057 @default.
- W3084773904 cites W2774982688 @default.
- W3084773904 cites W2782263264 @default.
- W3084773904 cites W2783050581 @default.
- W3084773904 cites W2783454141 @default.
- W3084773904 cites W2783662440 @default.
- W3084773904 cites W2783889649 @default.
- W3084773904 cites W2790072935 @default.
- W3084773904 cites W2794681304 @default.
- W3084773904 cites W2795936428 @default.
- W3084773904 cites W2797553074 @default.
- W3084773904 cites W2799463670 @default.
- W3084773904 cites W2803398966 @default.
- W3084773904 cites W2806443020 @default.
- W3084773904 cites W2807522328 @default.
- W3084773904 cites W2887137457 @default.
- W3084773904 cites W3034526591 @default.
- W3084773904 cites W3115300064 @default.
- W3084773904 doi "https://doi.org/10.7498/aps.68.20190806" @default.
- W3084773904 hasPublicationYear "2019" @default.
- W3084773904 type Work @default.
- W3084773904 sameAs 3084773904 @default.
- W3084773904 citedByCount "11" @default.
- W3084773904 countsByYear W30847739042020 @default.
- W3084773904 countsByYear W30847739042021 @default.
- W3084773904 countsByYear W30847739042022 @default.
- W3084773904 countsByYear W30847739042023 @default.
- W3084773904 crossrefType "journal-article" @default.
- W3084773904 hasAuthorship W3084773904A5001191710 @default.
- W3084773904 hasAuthorship W3084773904A5018750403 @default.
- W3084773904 hasAuthorship W3084773904A5021220105 @default.
- W3084773904 hasAuthorship W3084773904A5030093874 @default.
- W3084773904 hasAuthorship W3084773904A5034348704 @default.
- W3084773904 hasAuthorship W3084773904A5051363890 @default.
- W3084773904 hasAuthorship W3084773904A5052957111 @default.
- W3084773904 hasAuthorship W3084773904A5076667064 @default.
- W3084773904 hasBestOaLocation W30847739041 @default.
- W3084773904 hasConcept C101518730 @default.
- W3084773904 hasConcept C107240024 @default.
- W3084773904 hasConcept C119599485 @default.
- W3084773904 hasConcept C121332964 @default.
- W3084773904 hasConcept C127413603 @default.
- W3084773904 hasConcept C159985019 @default.
- W3084773904 hasConcept C163258240 @default.
- W3084773904 hasConcept C164411081 @default.
- W3084773904 hasConcept C165801399 @default.
- W3084773904 hasConcept C171146098 @default.
- W3084773904 hasConcept C17525397 @default.
- W3084773904 hasConcept C175616097 @default.
- W3084773904 hasConcept C188573790 @default.
- W3084773904 hasConcept C192562407 @default.
- W3084773904 hasConcept C198394728 @default.
- W3084773904 hasConcept C24890656 @default.
- W3084773904 hasConcept C39432304 @default.
- W3084773904 hasConcept C40293303 @default.
- W3084773904 hasConcept C41753357 @default.
- W3084773904 hasConcept C423512 @default.
- W3084773904 hasConcept C62520636 @default.
- W3084773904 hasConcept C80640880 @default.
- W3084773904 hasConcept C98576551 @default.
- W3084773904 hasConceptScore W3084773904C101518730 @default.
- W3084773904 hasConceptScore W3084773904C107240024 @default.
- W3084773904 hasConceptScore W3084773904C119599485 @default.
- W3084773904 hasConceptScore W3084773904C121332964 @default.
- W3084773904 hasConceptScore W3084773904C127413603 @default.
- W3084773904 hasConceptScore W3084773904C159985019 @default.
- W3084773904 hasConceptScore W3084773904C163258240 @default.
- W3084773904 hasConceptScore W3084773904C164411081 @default.
- W3084773904 hasConceptScore W3084773904C165801399 @default.
- W3084773904 hasConceptScore W3084773904C171146098 @default.
- W3084773904 hasConceptScore W3084773904C17525397 @default.