Matches in SemOpenAlex for { <https://semopenalex.org/work/W3084836075> ?p ?o ?g. }
- W3084836075 endingPage "4270" @default.
- W3084836075 startingPage "4253" @default.
- W3084836075 abstract "Abstract. Nutrient data from catchments discharging to receiving waters are monitored for catchment management. However, nutrient data are often sparse in time and space and have non-linear responses to environmental factors, making it difficult to systematically analyse long- and short-term trends and undertake nutrient budgets. To address these challenges, we developed a hybrid machine learning (ML) framework that first separated baseflow and quickflow from total flow, generated data for missing nutrient species, and then utilised the pre-generated nutrient data as additional variables in a final simulation of tributary water quality. Hybrid random forest (RF) and gradient boosting machine (GBM) models were employed and their performance compared with a linear model, a multivariate weighted regression model, and stand-alone RF and GBM models that did not pre-generate nutrient data. The six models were used to predict six different nutrients discharged from two study sites in Western Australia: Ellen Brook (small and ephemeral) and the Murray River (large and perennial). Our results showed that the hybrid RF and GBM models had significantly higher accuracy and lower prediction uncertainty for almost all nutrient species across the two sites. The pre-generated nutrient and hydrological data were highlighted as the most important components of the hybrid model. The model results also indicated different hydrological transport pathways for total nitrogen (TN) export from two tributary catchments. We demonstrated that the hybrid model provides a flexible method to combine data of varied resolution and quality and is accurate for the prediction of responses of surface water nutrient concentrations to hydrologic variability." @default.
- W3084836075 created "2020-09-21" @default.
- W3084836075 creator A5007264869 @default.
- W3084836075 creator A5034553808 @default.
- W3084836075 creator A5057227298 @default.
- W3084836075 date "2020-09-15" @default.
- W3084836075 modified "2023-09-30" @default.
- W3084836075 title "ML-SWAN-v1: a hybrid machine learning framework for the concentration prediction and discovery of transport pathways of surface water nutrients" @default.
- W3084836075 cites W1504767422 @default.
- W3084836075 cites W1537918099 @default.
- W3084836075 cites W1660213354 @default.
- W3084836075 cites W1767168228 @default.
- W3084836075 cites W17698858 @default.
- W3084836075 cites W1873194396 @default.
- W3084836075 cites W1969763128 @default.
- W3084836075 cites W1972951432 @default.
- W3084836075 cites W1976695423 @default.
- W3084836075 cites W1977643399 @default.
- W3084836075 cites W1978284082 @default.
- W3084836075 cites W1981896192 @default.
- W3084836075 cites W1986305937 @default.
- W3084836075 cites W1996202672 @default.
- W3084836075 cites W1998026216 @default.
- W3084836075 cites W1998273223 @default.
- W3084836075 cites W2000181154 @default.
- W3084836075 cites W2011554323 @default.
- W3084836075 cites W2017137764 @default.
- W3084836075 cites W2020286630 @default.
- W3084836075 cites W2026114043 @default.
- W3084836075 cites W2027475942 @default.
- W3084836075 cites W2030376676 @default.
- W3084836075 cites W2038132790 @default.
- W3084836075 cites W2053477066 @default.
- W3084836075 cites W2056267953 @default.
- W3084836075 cites W2056950965 @default.
- W3084836075 cites W2062270742 @default.
- W3084836075 cites W2066611652 @default.
- W3084836075 cites W2067044846 @default.
- W3084836075 cites W2068816495 @default.
- W3084836075 cites W2070493638 @default.
- W3084836075 cites W2077326648 @default.
- W3084836075 cites W2078784462 @default.
- W3084836075 cites W2080791146 @default.
- W3084836075 cites W2090099381 @default.
- W3084836075 cites W2090625733 @default.
- W3084836075 cites W2092173401 @default.
- W3084836075 cites W2094358071 @default.
- W3084836075 cites W2097093145 @default.
- W3084836075 cites W2103058488 @default.
- W3084836075 cites W2103865037 @default.
- W3084836075 cites W2106660987 @default.
- W3084836075 cites W2108750696 @default.
- W3084836075 cites W2109374394 @default.
- W3084836075 cites W2118303705 @default.
- W3084836075 cites W2127188643 @default.
- W3084836075 cites W2127629406 @default.
- W3084836075 cites W2133424675 @default.
- W3084836075 cites W2139086914 @default.
- W3084836075 cites W2140828853 @default.
- W3084836075 cites W2149331943 @default.
- W3084836075 cites W2151061387 @default.
- W3084836075 cites W2152928946 @default.
- W3084836075 cites W2158278487 @default.
- W3084836075 cites W2159382368 @default.
- W3084836075 cites W2160908538 @default.
- W3084836075 cites W2162971192 @default.
- W3084836075 cites W2166121335 @default.
- W3084836075 cites W2210378132 @default.
- W3084836075 cites W2222853088 @default.
- W3084836075 cites W2222889476 @default.
- W3084836075 cites W2230911711 @default.
- W3084836075 cites W2261059368 @default.
- W3084836075 cites W2265551692 @default.
- W3084836075 cites W2278579005 @default.
- W3084836075 cites W2386091872 @default.
- W3084836075 cites W2419379869 @default.
- W3084836075 cites W2473225783 @default.
- W3084836075 cites W2508775058 @default.
- W3084836075 cites W2563013564 @default.
- W3084836075 cites W2576589933 @default.
- W3084836075 cites W2621643956 @default.
- W3084836075 cites W2804178202 @default.
- W3084836075 cites W2810708601 @default.
- W3084836075 cites W2889192391 @default.
- W3084836075 cites W2902326815 @default.
- W3084836075 cites W2911964244 @default.
- W3084836075 cites W2947314267 @default.
- W3084836075 cites W2958116415 @default.
- W3084836075 cites W3098799846 @default.
- W3084836075 cites W635952814 @default.
- W3084836075 doi "https://doi.org/10.5194/gmd-13-4253-2020" @default.
- W3084836075 hasPublicationYear "2020" @default.
- W3084836075 type Work @default.
- W3084836075 sameAs 3084836075 @default.
- W3084836075 citedByCount "0" @default.
- W3084836075 crossrefType "journal-article" @default.
- W3084836075 hasAuthorship W3084836075A5007264869 @default.
- W3084836075 hasAuthorship W3084836075A5034553808 @default.