Matches in SemOpenAlex for { <https://semopenalex.org/work/W3084841887> ?p ?o ?g. }
- W3084841887 endingPage "1814" @default.
- W3084841887 startingPage "1814" @default.
- W3084841887 abstract "Transition-metal oxide nanoparticles are relevant for many applications in different areas where their superparamagnetic behavior and low blocking temperature are required. However, they have low magnetic moments, which does not favor their being turned into active actuators. Here, we report a systematical study, within the framework of the density functional theory, of the possibility of promoting a high-spin state in small late-transition-metal oxide nanoparticles through alloying. We investigated all possible nanoalloys An−xBxOm (A, B = Fe, Co, Ni; n = 2, 3, 4; 0≤x≤n) with different oxidation rates, m, up to saturation. We found that the higher the concentration of Fe, the higher the absolute stability of the oxidized nanoalloy, while the higher the Ni content, the less prone to oxidation. We demonstrate that combining the stronger tendency of Co and Ni toward parallel couplings with the larger spin polarization of Fe is particularly beneficial for certain nanoalloys in order to achieve a high total magnetic moment, and its robustness against oxidation. In particular, at high oxidation rates we found that certain FeCo oxidized nanoalloys outperform both their pure counterparts, and that alloying even promotes the reentrance of magnetism in certain cases at a critical oxygen rate, close to saturation, at which the pure oxidized counterparts exhibit quenched magnetic moments." @default.
- W3084841887 created "2020-09-21" @default.
- W3084841887 creator A5004037120 @default.
- W3084841887 creator A5013576055 @default.
- W3084841887 creator A5014989575 @default.
- W3084841887 creator A5082182309 @default.
- W3084841887 date "2020-09-11" @default.
- W3084841887 modified "2023-10-17" @default.
- W3084841887 title "Tuning the Magnetic Moment of Small Late 3d-Transition-Metal Oxide Clusters by Selectively Mixing the Transition-Metal Constituents" @default.
- W3084841887 cites W1967231219 @default.
- W3084841887 cites W1970898339 @default.
- W3084841887 cites W1972792222 @default.
- W3084841887 cites W1972827569 @default.
- W3084841887 cites W1981368803 @default.
- W3084841887 cites W1981533112 @default.
- W3084841887 cites W1997715935 @default.
- W3084841887 cites W2000902094 @default.
- W3084841887 cites W2005132634 @default.
- W3084841887 cites W2005407618 @default.
- W3084841887 cites W2014971973 @default.
- W3084841887 cites W2017672514 @default.
- W3084841887 cites W2018517592 @default.
- W3084841887 cites W2029385218 @default.
- W3084841887 cites W2030582590 @default.
- W3084841887 cites W2031700073 @default.
- W3084841887 cites W2043418391 @default.
- W3084841887 cites W2044790533 @default.
- W3084841887 cites W2045596260 @default.
- W3084841887 cites W2047159220 @default.
- W3084841887 cites W2054997209 @default.
- W3084841887 cites W205555520 @default.
- W3084841887 cites W2055640329 @default.
- W3084841887 cites W2061877539 @default.
- W3084841887 cites W2065404581 @default.
- W3084841887 cites W2073936730 @default.
- W3084841887 cites W2074469015 @default.
- W3084841887 cites W2077553502 @default.
- W3084841887 cites W2081300400 @default.
- W3084841887 cites W2082907005 @default.
- W3084841887 cites W2086617344 @default.
- W3084841887 cites W2093398757 @default.
- W3084841887 cites W2110233014 @default.
- W3084841887 cites W2115436083 @default.
- W3084841887 cites W2126346850 @default.
- W3084841887 cites W2136276489 @default.
- W3084841887 cites W2141704677 @default.
- W3084841887 cites W2153844978 @default.
- W3084841887 cites W2163151727 @default.
- W3084841887 cites W2314406847 @default.
- W3084841887 cites W2315762230 @default.
- W3084841887 cites W2316345200 @default.
- W3084841887 cites W2330078761 @default.
- W3084841887 cites W2331377526 @default.
- W3084841887 cites W2334097640 @default.
- W3084841887 cites W2415641258 @default.
- W3084841887 cites W2418521523 @default.
- W3084841887 cites W2518430719 @default.
- W3084841887 cites W2523385556 @default.
- W3084841887 cites W2793017816 @default.
- W3084841887 cites W2889615184 @default.
- W3084841887 cites W3007599434 @default.
- W3084841887 cites W4230925131 @default.
- W3084841887 cites W4233170176 @default.
- W3084841887 doi "https://doi.org/10.3390/nano10091814" @default.
- W3084841887 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7559123" @default.
- W3084841887 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32932899" @default.
- W3084841887 hasPublicationYear "2020" @default.
- W3084841887 type Work @default.
- W3084841887 sameAs 3084841887 @default.
- W3084841887 citedByCount "0" @default.
- W3084841887 crossrefType "journal-article" @default.
- W3084841887 hasAuthorship W3084841887A5004037120 @default.
- W3084841887 hasAuthorship W3084841887A5013576055 @default.
- W3084841887 hasAuthorship W3084841887A5014989575 @default.
- W3084841887 hasAuthorship W3084841887A5082182309 @default.
- W3084841887 hasBestOaLocation W30848418871 @default.
- W3084841887 hasConcept C106773901 @default.
- W3084841887 hasConcept C114614502 @default.
- W3084841887 hasConcept C115260700 @default.
- W3084841887 hasConcept C121332964 @default.
- W3084841887 hasConcept C155672457 @default.
- W3084841887 hasConcept C159467904 @default.
- W3084841887 hasConcept C161790260 @default.
- W3084841887 hasConcept C171250308 @default.
- W3084841887 hasConcept C178790620 @default.
- W3084841887 hasConcept C185592680 @default.
- W3084841887 hasConcept C191897082 @default.
- W3084841887 hasConcept C192562407 @default.
- W3084841887 hasConcept C197162081 @default.
- W3084841887 hasConcept C23792430 @default.
- W3084841887 hasConcept C26873012 @default.
- W3084841887 hasConcept C2779851234 @default.
- W3084841887 hasConcept C32546565 @default.
- W3084841887 hasConcept C33923547 @default.
- W3084841887 hasConcept C544153396 @default.
- W3084841887 hasConcept C54553102 @default.
- W3084841887 hasConcept C62520636 @default.
- W3084841887 hasConcept C82217956 @default.