Matches in SemOpenAlex for { <https://semopenalex.org/work/W3084880190> ?p ?o ?g. }
- W3084880190 endingPage "40" @default.
- W3084880190 startingPage "30" @default.
- W3084880190 abstract "ConspectusPropylene serves as one of the most significant compounds in the chemical industry. Propane dehydrogenation (PDH), an “on purpose” propylene production technology is developing. Pt- and CrOx-based catalysts are widely applied in commercialized PDH processes, and both exhibit high activity and propylene yields. However, as an intensively endothermic process, PDH requires operation at high temperatures (generally above 500 °C), which restricts the C3H6 selectivity and catalyst structure stability on account of coking side reactions, particle sintering, and so forth. Nanostructured catalysts (NCs) based on metals and/or metal oxides with tunable geometric and electronic properties play significant roles because such features intrinsically influence the adsorption of propyl intermediates on the catalyst surface. However, thermodynamical metastability of these NCs results in grand challenges in their structure-controlled preparation. The regulation of material structure and reaction performance at the molecular and atomic levels has attracted extended attention over the past few years.This Account describes our recent advances in controllable regulation of metal and oxide NCs toward efficient propane dehydrogenation. As a structure-insensitive reaction, the dehydrogenation of propane can occur on an individual active site, while larger ensembles of active sites also induce structure-sensitive side reactions, leading to C–C cracking and coke deposition. This paper is aimed at delivering general fundamentals for rational design of NCs in PDH reactions. We start with the catalytic kinetics on the active sites regarding the adsorption of key propyl intermediates on the surface. In subsequent sections, we present the effective regulation strategies for metal and oxide NCs by promoter and support effects. Upon metal NCs, coke deposition and nanoparticles (NPs) sintering tend to occur, which can be suppressed with the increase of geometric separation and charge density of surface active sites by changing alloy compositions, ordered intermetallic alloys, single-atom catalysts, core–shell, and metal–oxide interface structures. Notably, the confinement approach of embedding active sites in zeolite frameworks significantly inhibits the sintering of metal NPs. As alternatives to metals, metal oxides exhibit lower cost but higher barriers of C–H activation and coking inclination. The C–H bond cleavage has been promoted by inducing intrinsic defect sites, such as oxygen vacancies, hydroxyls, and hydrides on the surface and heterogeneous doping in the bulk. Importantly, the structures of the submonolayer/monolayer triggered by spontaneous dispersion and confinement in mesoporous materials significantly improve the oxide activity and stability. All of these strategies have been essential for the efficient PDH reactions. Moreover, the challenges and perspectives are also discussed. It is hoped that the deliberate manipulation of nanostructured catalysts to regulate the reaction mechanism will hold the key to efficient alkane conversion." @default.
- W3084880190 created "2020-09-21" @default.
- W3084880190 creator A5005904698 @default.
- W3084880190 creator A5043523556 @default.
- W3084880190 creator A5047030779 @default.
- W3084880190 creator A5068274938 @default.
- W3084880190 creator A5084194253 @default.
- W3084880190 date "2020-09-14" @default.
- W3084880190 modified "2023-10-15" @default.
- W3084880190 title "Nanostructured Catalysts toward Efficient Propane Dehydrogenation" @default.
- W3084880190 cites W1957451272 @default.
- W3084880190 cites W1985960755 @default.
- W3084880190 cites W1988340276 @default.
- W3084880190 cites W1996923858 @default.
- W3084880190 cites W2010085325 @default.
- W3084880190 cites W2011158115 @default.
- W3084880190 cites W2044070087 @default.
- W3084880190 cites W2094817259 @default.
- W3084880190 cites W2101965490 @default.
- W3084880190 cites W2107923188 @default.
- W3084880190 cites W2133054110 @default.
- W3084880190 cites W2136188434 @default.
- W3084880190 cites W2161560552 @default.
- W3084880190 cites W2168587701 @default.
- W3084880190 cites W2172735359 @default.
- W3084880190 cites W2286014773 @default.
- W3084880190 cites W2304670392 @default.
- W3084880190 cites W2315173749 @default.
- W3084880190 cites W2318470376 @default.
- W3084880190 cites W2342530908 @default.
- W3084880190 cites W2364351164 @default.
- W3084880190 cites W2486685431 @default.
- W3084880190 cites W2492360556 @default.
- W3084880190 cites W2550365916 @default.
- W3084880190 cites W2556752910 @default.
- W3084880190 cites W2557521583 @default.
- W3084880190 cites W2562227471 @default.
- W3084880190 cites W2563995575 @default.
- W3084880190 cites W2605096995 @default.
- W3084880190 cites W2606489471 @default.
- W3084880190 cites W2612517172 @default.
- W3084880190 cites W2623592948 @default.
- W3084880190 cites W2624619134 @default.
- W3084880190 cites W2625785707 @default.
- W3084880190 cites W2695415791 @default.
- W3084880190 cites W2783955276 @default.
- W3084880190 cites W2790370505 @default.
- W3084880190 cites W2790712349 @default.
- W3084880190 cites W2792235917 @default.
- W3084880190 cites W2799311380 @default.
- W3084880190 cites W2886864778 @default.
- W3084880190 cites W2891997901 @default.
- W3084880190 cites W2896610803 @default.
- W3084880190 cites W2897084257 @default.
- W3084880190 cites W2905123457 @default.
- W3084880190 cites W2928147703 @default.
- W3084880190 cites W2940798613 @default.
- W3084880190 cites W2965101299 @default.
- W3084880190 cites W2987812995 @default.
- W3084880190 cites W2995047515 @default.
- W3084880190 cites W3007920864 @default.
- W3084880190 cites W3011812256 @default.
- W3084880190 cites W3033854538 @default.
- W3084880190 cites W3035987914 @default.
- W3084880190 doi "https://doi.org/10.1021/accountsmr.0c00012" @default.
- W3084880190 hasPublicationYear "2020" @default.
- W3084880190 type Work @default.
- W3084880190 sameAs 3084880190 @default.
- W3084880190 citedByCount "47" @default.
- W3084880190 countsByYear W30848801902021 @default.
- W3084880190 countsByYear W30848801902022 @default.
- W3084880190 countsByYear W30848801902023 @default.
- W3084880190 crossrefType "journal-article" @default.
- W3084880190 hasAuthorship W3084880190A5005904698 @default.
- W3084880190 hasAuthorship W3084880190A5043523556 @default.
- W3084880190 hasAuthorship W3084880190A5047030779 @default.
- W3084880190 hasAuthorship W3084880190A5068274938 @default.
- W3084880190 hasAuthorship W3084880190A5084194253 @default.
- W3084880190 hasBestOaLocation W30848801901 @default.
- W3084880190 hasConcept C119889771 @default.
- W3084880190 hasConcept C127413603 @default.
- W3084880190 hasConcept C150394285 @default.
- W3084880190 hasConcept C161790260 @default.
- W3084880190 hasConcept C178790620 @default.
- W3084880190 hasConcept C179104552 @default.
- W3084880190 hasConcept C185592680 @default.
- W3084880190 hasConcept C192562407 @default.
- W3084880190 hasConcept C20976626 @default.
- W3084880190 hasConcept C2776345496 @default.
- W3084880190 hasConcept C2779851234 @default.
- W3084880190 hasConcept C42360764 @default.
- W3084880190 hasConcept C45119746 @default.
- W3084880190 hasConcept C544153396 @default.
- W3084880190 hasConceptScore W3084880190C119889771 @default.
- W3084880190 hasConceptScore W3084880190C127413603 @default.
- W3084880190 hasConceptScore W3084880190C150394285 @default.
- W3084880190 hasConceptScore W3084880190C161790260 @default.
- W3084880190 hasConceptScore W3084880190C178790620 @default.