Matches in SemOpenAlex for { <https://semopenalex.org/work/W3084891303> ?p ?o ?g. }
- W3084891303 endingPage "180" @default.
- W3084891303 startingPage "169" @default.
- W3084891303 abstract "Regularization is necessary for solving nonlinear ill-posed inverse problems arising in different fields of geosciences. The base of a suitable regularization is the prior expressed by the regularizer, which can be non-adaptive or adaptive (data-driven). In this paper, we propose general black-box regularization algorithms for solving nonlinear inverse problems such as full-waveform inversion (FWI), which admit empirical priors that are determined adaptively by sophisticated denoising algorithms. The nonlinear inverse problem is solved by a proximal Newton method, which generalizes the traditional Newton step in such a way to involve the gradients/subgradients of a (possibly non-differentiable) regularization function through operator splitting and proximal mappings. Furthermore, it requires to account for the Hessian matrix in the regularized least-squares optimization problem. We propose two different splitting algorithms for this task. In the first, we compute the Newton search direction with an iterative method based upon the first-order generalized iterative shrinkage-thresholding algorithm (ISTA), and hence Newton-ISTA (NISTA). The iterations require only Hessian-vector products to compute the gradient step of the quadratic approximation of the nonlinear objective function. The second relies on the alternating direction method of multipliers (ADMM), and hence Newton-ADMM (NADMM), where the least-square optimization subproblem and the regularization subproblem in the composite are decoupled through auxiliary variable and solved in an alternating mode. We compare NISTA and NADMM numerically by solving full-waveform inversion with BM3D regularizations. The tests show promising results obtained by both algorithms. However, NADMM shows a faster convergence rate than Newton-ISTA when using L-BFGS to solve the Newton system." @default.
- W3084891303 created "2020-09-21" @default.
- W3084891303 creator A5028272318 @default.
- W3084891303 creator A5075147171 @default.
- W3084891303 creator A5079625867 @default.
- W3084891303 date "2020-09-11" @default.
- W3084891303 modified "2023-09-30" @default.
- W3084891303 title "Full waveform inversion by proximal Newton method using adaptive regularization" @default.
- W3084891303 cites W1512208174 @default.
- W3084891303 cites W1837565340 @default.
- W3084891303 cites W1946620893 @default.
- W3084891303 cites W1971971422 @default.
- W3084891303 cites W1998419211 @default.
- W3084891303 cites W2009552164 @default.
- W3084891303 cites W2026019078 @default.
- W3084891303 cites W2035265321 @default.
- W3084891303 cites W2065538232 @default.
- W3084891303 cites W2087416986 @default.
- W3084891303 cites W2100245965 @default.
- W3084891303 cites W2100556411 @default.
- W3084891303 cites W2115706991 @default.
- W3084891303 cites W2125916088 @default.
- W3084891303 cites W2134832666 @default.
- W3084891303 cites W2136247928 @default.
- W3084891303 cites W2142058898 @default.
- W3084891303 cites W2142334343 @default.
- W3084891303 cites W2155432292 @default.
- W3084891303 cites W2275489619 @default.
- W3084891303 cites W2331422999 @default.
- W3084891303 cites W2489539531 @default.
- W3084891303 cites W2565316061 @default.
- W3084891303 cites W2586269368 @default.
- W3084891303 cites W2588776893 @default.
- W3084891303 cites W2765431787 @default.
- W3084891303 cites W2803126477 @default.
- W3084891303 cites W2808216669 @default.
- W3084891303 cites W2903786527 @default.
- W3084891303 cites W2913015110 @default.
- W3084891303 cites W2944935760 @default.
- W3084891303 cites W2952590710 @default.
- W3084891303 cites W2963173886 @default.
- W3084891303 cites W2972158684 @default.
- W3084891303 cites W2991536562 @default.
- W3084891303 cites W3098092317 @default.
- W3084891303 cites W3123837026 @default.
- W3084891303 cites W4292363360 @default.
- W3084891303 doi "https://doi.org/10.1093/gji/ggaa434" @default.
- W3084891303 hasPublicationYear "2020" @default.
- W3084891303 type Work @default.
- W3084891303 sameAs 3084891303 @default.
- W3084891303 citedByCount "14" @default.
- W3084891303 countsByYear W30848913032021 @default.
- W3084891303 countsByYear W30848913032022 @default.
- W3084891303 countsByYear W30848913032023 @default.
- W3084891303 crossrefType "journal-article" @default.
- W3084891303 hasAuthorship W3084891303A5028272318 @default.
- W3084891303 hasAuthorship W3084891303A5075147171 @default.
- W3084891303 hasAuthorship W3084891303A5079625867 @default.
- W3084891303 hasBestOaLocation W30848913032 @default.
- W3084891303 hasConcept C11413529 @default.
- W3084891303 hasConcept C116149140 @default.
- W3084891303 hasConcept C121332964 @default.
- W3084891303 hasConcept C126255220 @default.
- W3084891303 hasConcept C134306372 @default.
- W3084891303 hasConcept C135252773 @default.
- W3084891303 hasConcept C153258448 @default.
- W3084891303 hasConcept C154945302 @default.
- W3084891303 hasConcept C158622935 @default.
- W3084891303 hasConcept C159694833 @default.
- W3084891303 hasConcept C202615002 @default.
- W3084891303 hasConcept C203616005 @default.
- W3084891303 hasConcept C2776135515 @default.
- W3084891303 hasConcept C28826006 @default.
- W3084891303 hasConcept C33923547 @default.
- W3084891303 hasConcept C41008148 @default.
- W3084891303 hasConcept C50644808 @default.
- W3084891303 hasConcept C62520636 @default.
- W3084891303 hasConcept C85189116 @default.
- W3084891303 hasConceptScore W3084891303C11413529 @default.
- W3084891303 hasConceptScore W3084891303C116149140 @default.
- W3084891303 hasConceptScore W3084891303C121332964 @default.
- W3084891303 hasConceptScore W3084891303C126255220 @default.
- W3084891303 hasConceptScore W3084891303C134306372 @default.
- W3084891303 hasConceptScore W3084891303C135252773 @default.
- W3084891303 hasConceptScore W3084891303C153258448 @default.
- W3084891303 hasConceptScore W3084891303C154945302 @default.
- W3084891303 hasConceptScore W3084891303C158622935 @default.
- W3084891303 hasConceptScore W3084891303C159694833 @default.
- W3084891303 hasConceptScore W3084891303C202615002 @default.
- W3084891303 hasConceptScore W3084891303C203616005 @default.
- W3084891303 hasConceptScore W3084891303C2776135515 @default.
- W3084891303 hasConceptScore W3084891303C28826006 @default.
- W3084891303 hasConceptScore W3084891303C33923547 @default.
- W3084891303 hasConceptScore W3084891303C41008148 @default.
- W3084891303 hasConceptScore W3084891303C50644808 @default.
- W3084891303 hasConceptScore W3084891303C62520636 @default.
- W3084891303 hasConceptScore W3084891303C85189116 @default.
- W3084891303 hasFunder F4320307806 @default.