Matches in SemOpenAlex for { <https://semopenalex.org/work/W3084937280> ?p ?o ?g. }
- W3084937280 endingPage "101887" @default.
- W3084937280 startingPage "101887" @default.
- W3084937280 abstract "Convolutional neural networks (CNNs) have proven to be a disruptive technology in most vision, speech and image processing tasks. Given their ubiquitous acceptance, the research community is investing a lot of time and resources on deep neural networks. Custom hardware such as ASICs are proving to be extremely worthy platforms for running such programs. However, the ever-increasing complexity of these algorithms poses challenges in achieving real-time performance. Specifically, CNNs have prohibitive costs in terms of computation time, throughput, latency, storage space, memory bandwidth, and power consumption. Hence, in the last 5 years, a lot of work has been done by the scientific community to mitigate these costs. Researchers have primarily focused on reducing the computation time, the number of computations, the memory access time, and the size of the memory footprint. In this survey paper, we propose a novel taxonomy to classify prior work, and describe some of the key contributions in these areas in detail." @default.
- W3084937280 created "2020-09-21" @default.
- W3084937280 creator A5007225479 @default.
- W3084937280 creator A5011936649 @default.
- W3084937280 creator A5071424693 @default.
- W3084937280 date "2021-02-01" @default.
- W3084937280 modified "2023-10-07" @default.
- W3084937280 title "Accelerating CNN Inference on ASICs: A Survey" @default.
- W3084937280 cites W1801710398 @default.
- W3084937280 cites W1977850862 @default.
- W3084937280 cites W2034601083 @default.
- W3084937280 cites W2044535169 @default.
- W3084937280 cites W2117539524 @default.
- W3084937280 cites W2138815064 @default.
- W3084937280 cites W2260498192 @default.
- W3084937280 cites W2289252105 @default.
- W3084937280 cites W2604319603 @default.
- W3084937280 cites W2623629680 @default.
- W3084937280 cites W2750173518 @default.
- W3084937280 cites W2783718830 @default.
- W3084937280 cites W2787884921 @default.
- W3084937280 cites W2790537299 @default.
- W3084937280 cites W2796625795 @default.
- W3084937280 cites W2802367674 @default.
- W3084937280 cites W2804866494 @default.
- W3084937280 cites W2895531329 @default.
- W3084937280 cites W2900643002 @default.
- W3084937280 cites W2903688003 @default.
- W3084937280 cites W2907463061 @default.
- W3084937280 cites W2907882680 @default.
- W3084937280 cites W2914219486 @default.
- W3084937280 cites W2944908033 @default.
- W3084937280 cites W2945146780 @default.
- W3084937280 cites W2963145956 @default.
- W3084937280 cites W2989569745 @default.
- W3084937280 cites W3036079062 @default.
- W3084937280 cites W3036878841 @default.
- W3084937280 cites W4230910951 @default.
- W3084937280 cites W4285718438 @default.
- W3084937280 doi "https://doi.org/10.1016/j.sysarc.2020.101887" @default.
- W3084937280 hasPublicationYear "2021" @default.
- W3084937280 type Work @default.
- W3084937280 sameAs 3084937280 @default.
- W3084937280 citedByCount "35" @default.
- W3084937280 countsByYear W30849372802021 @default.
- W3084937280 countsByYear W30849372802022 @default.
- W3084937280 countsByYear W30849372802023 @default.
- W3084937280 crossrefType "journal-article" @default.
- W3084937280 hasAuthorship W3084937280A5007225479 @default.
- W3084937280 hasAuthorship W3084937280A5011936649 @default.
- W3084937280 hasAuthorship W3084937280A5071424693 @default.
- W3084937280 hasConcept C111919701 @default.
- W3084937280 hasConcept C113775141 @default.
- W3084937280 hasConcept C11413529 @default.
- W3084937280 hasConcept C118524514 @default.
- W3084937280 hasConcept C119857082 @default.
- W3084937280 hasConcept C149635348 @default.
- W3084937280 hasConcept C154945302 @default.
- W3084937280 hasConcept C157764524 @default.
- W3084937280 hasConcept C17305859 @default.
- W3084937280 hasConcept C188045654 @default.
- W3084937280 hasConcept C26517878 @default.
- W3084937280 hasConcept C2776214188 @default.
- W3084937280 hasConcept C2776257435 @default.
- W3084937280 hasConcept C31258907 @default.
- W3084937280 hasConcept C38652104 @default.
- W3084937280 hasConcept C41008148 @default.
- W3084937280 hasConcept C45374587 @default.
- W3084937280 hasConcept C555944384 @default.
- W3084937280 hasConcept C7366592 @default.
- W3084937280 hasConcept C74912251 @default.
- W3084937280 hasConcept C76155785 @default.
- W3084937280 hasConcept C77390884 @default.
- W3084937280 hasConcept C81363708 @default.
- W3084937280 hasConcept C82876162 @default.
- W3084937280 hasConcept C9390403 @default.
- W3084937280 hasConceptScore W3084937280C111919701 @default.
- W3084937280 hasConceptScore W3084937280C113775141 @default.
- W3084937280 hasConceptScore W3084937280C11413529 @default.
- W3084937280 hasConceptScore W3084937280C118524514 @default.
- W3084937280 hasConceptScore W3084937280C119857082 @default.
- W3084937280 hasConceptScore W3084937280C149635348 @default.
- W3084937280 hasConceptScore W3084937280C154945302 @default.
- W3084937280 hasConceptScore W3084937280C157764524 @default.
- W3084937280 hasConceptScore W3084937280C17305859 @default.
- W3084937280 hasConceptScore W3084937280C188045654 @default.
- W3084937280 hasConceptScore W3084937280C26517878 @default.
- W3084937280 hasConceptScore W3084937280C2776214188 @default.
- W3084937280 hasConceptScore W3084937280C2776257435 @default.
- W3084937280 hasConceptScore W3084937280C31258907 @default.
- W3084937280 hasConceptScore W3084937280C38652104 @default.
- W3084937280 hasConceptScore W3084937280C41008148 @default.
- W3084937280 hasConceptScore W3084937280C45374587 @default.
- W3084937280 hasConceptScore W3084937280C555944384 @default.
- W3084937280 hasConceptScore W3084937280C7366592 @default.
- W3084937280 hasConceptScore W3084937280C74912251 @default.
- W3084937280 hasConceptScore W3084937280C76155785 @default.
- W3084937280 hasConceptScore W3084937280C77390884 @default.