Matches in SemOpenAlex for { <https://semopenalex.org/work/W3084940491> ?p ?o ?g. }
- W3084940491 endingPage "1508" @default.
- W3084940491 startingPage "1508" @default.
- W3084940491 abstract "The goal of the few-shot learning method is to learn quickly from a low-data regime. Structured output tasks like segmentation are challenging for few-shot learning, due to their being high-dimensional and statistically dependent. For this problem, we propose improved guided networks and combine them with a fully connected conditional random field (CRF). The guided network extracts task representations from annotated support images through feature fusion to do fast, accurate inference on new unannotated query images. By bringing together few-shot learning methods and fully connected CRFs, our method can do accurate object segmentation by overcoming poor localization properties of deep convolutional neural networks and can quickly updating tasks, without further optimization, when faced with new data. Our guided network is at the forefront of accuracy for the terms of annotation volume and time." @default.
- W3084940491 created "2020-09-21" @default.
- W3084940491 creator A5004874964 @default.
- W3084940491 creator A5007211501 @default.
- W3084940491 creator A5014684415 @default.
- W3084940491 creator A5016038041 @default.
- W3084940491 creator A5016657120 @default.
- W3084940491 creator A5068363339 @default.
- W3084940491 date "2020-09-14" @default.
- W3084940491 modified "2023-10-18" @default.
- W3084940491 title "Guided Networks for Few-Shot Image Segmentation and Fully Connected CRFs" @default.
- W3084940491 cites W2054279472 @default.
- W3084940491 cites W2116877738 @default.
- W3084940491 cites W2117539524 @default.
- W3084940491 cites W2124351162 @default.
- W3084940491 cites W2412782625 @default.
- W3084940491 cites W2533800621 @default.
- W3084940491 cites W2775984582 @default.
- W3084940491 cites W2793556064 @default.
- W3084940491 cites W2804081635 @default.
- W3084940491 cites W2963881378 @default.
- W3084940491 cites W3016866167 @default.
- W3084940491 doi "https://doi.org/10.3390/electronics9091508" @default.
- W3084940491 hasPublicationYear "2020" @default.
- W3084940491 type Work @default.
- W3084940491 sameAs 3084940491 @default.
- W3084940491 citedByCount "0" @default.
- W3084940491 crossrefType "journal-article" @default.
- W3084940491 hasAuthorship W3084940491A5004874964 @default.
- W3084940491 hasAuthorship W3084940491A5007211501 @default.
- W3084940491 hasAuthorship W3084940491A5014684415 @default.
- W3084940491 hasAuthorship W3084940491A5016038041 @default.
- W3084940491 hasAuthorship W3084940491A5016657120 @default.
- W3084940491 hasAuthorship W3084940491A5068363339 @default.
- W3084940491 hasBestOaLocation W30849404911 @default.
- W3084940491 hasConcept C108583219 @default.
- W3084940491 hasConcept C119857082 @default.
- W3084940491 hasConcept C124504099 @default.
- W3084940491 hasConcept C138885662 @default.
- W3084940491 hasConcept C152565575 @default.
- W3084940491 hasConcept C153180895 @default.
- W3084940491 hasConcept C154945302 @default.
- W3084940491 hasConcept C162324750 @default.
- W3084940491 hasConcept C178790620 @default.
- W3084940491 hasConcept C185592680 @default.
- W3084940491 hasConcept C187736073 @default.
- W3084940491 hasConcept C22367795 @default.
- W3084940491 hasConcept C2775953691 @default.
- W3084940491 hasConcept C2776214188 @default.
- W3084940491 hasConcept C2776321320 @default.
- W3084940491 hasConcept C2776401178 @default.
- W3084940491 hasConcept C2778344882 @default.
- W3084940491 hasConcept C2780451532 @default.
- W3084940491 hasConcept C2781238097 @default.
- W3084940491 hasConcept C41008148 @default.
- W3084940491 hasConcept C41895202 @default.
- W3084940491 hasConcept C81363708 @default.
- W3084940491 hasConcept C89600930 @default.
- W3084940491 hasConceptScore W3084940491C108583219 @default.
- W3084940491 hasConceptScore W3084940491C119857082 @default.
- W3084940491 hasConceptScore W3084940491C124504099 @default.
- W3084940491 hasConceptScore W3084940491C138885662 @default.
- W3084940491 hasConceptScore W3084940491C152565575 @default.
- W3084940491 hasConceptScore W3084940491C153180895 @default.
- W3084940491 hasConceptScore W3084940491C154945302 @default.
- W3084940491 hasConceptScore W3084940491C162324750 @default.
- W3084940491 hasConceptScore W3084940491C178790620 @default.
- W3084940491 hasConceptScore W3084940491C185592680 @default.
- W3084940491 hasConceptScore W3084940491C187736073 @default.
- W3084940491 hasConceptScore W3084940491C22367795 @default.
- W3084940491 hasConceptScore W3084940491C2775953691 @default.
- W3084940491 hasConceptScore W3084940491C2776214188 @default.
- W3084940491 hasConceptScore W3084940491C2776321320 @default.
- W3084940491 hasConceptScore W3084940491C2776401178 @default.
- W3084940491 hasConceptScore W3084940491C2778344882 @default.
- W3084940491 hasConceptScore W3084940491C2780451532 @default.
- W3084940491 hasConceptScore W3084940491C2781238097 @default.
- W3084940491 hasConceptScore W3084940491C41008148 @default.
- W3084940491 hasConceptScore W3084940491C41895202 @default.
- W3084940491 hasConceptScore W3084940491C81363708 @default.
- W3084940491 hasConceptScore W3084940491C89600930 @default.
- W3084940491 hasIssue "9" @default.
- W3084940491 hasLocation W30849404911 @default.
- W3084940491 hasLocation W30849404912 @default.
- W3084940491 hasOpenAccess W3084940491 @default.
- W3084940491 hasPrimaryLocation W30849404911 @default.
- W3084940491 hasRelatedWork W136646293 @default.
- W3084940491 hasRelatedWork W2408456010 @default.
- W3084940491 hasRelatedWork W2952578740 @default.
- W3084940491 hasRelatedWork W2963644502 @default.
- W3084940491 hasRelatedWork W2966354721 @default.
- W3084940491 hasRelatedWork W3019131160 @default.
- W3084940491 hasRelatedWork W3084940491 @default.
- W3084940491 hasRelatedWork W4293211451 @default.
- W3084940491 hasRelatedWork W4301021628 @default.
- W3084940491 hasRelatedWork W613121520 @default.
- W3084940491 hasVolume "9" @default.
- W3084940491 isParatext "false" @default.