Matches in SemOpenAlex for { <https://semopenalex.org/work/W3085002566> ?p ?o ?g. }
- W3085002566 abstract "Abstract Numerical forecasts always have associated errors. Analog correction methods combine numerical simulations with statistical analyses to reduce model forecast errors. However, identifying appropriate analogs remains a challenging task. Here, we use the Local Dynamical Analog (LDA) method to locate analogs and correct model forecast errors. As an example, an El Niño–Southern Oscillation (ENSO) intermediate coupled model forecast error correction experiment confirms that the LDA method locates high quality analogs of states of interest and improves the model forecast performance, which is due to the initial and evolution information included in the LDA method. In addition, the LDA method can be applied using a scalar time series, which reduces the complexity of the dynamical system. The LDA method is a promising method to locate dynamic analogs and can be applied to existing numerical models and forecast results." @default.
- W3085002566 created "2020-09-21" @default.
- W3085002566 creator A5010292234 @default.
- W3085002566 creator A5019815062 @default.
- W3085002566 creator A5023933852 @default.
- W3085002566 creator A5025543473 @default.
- W3085002566 creator A5030983879 @default.
- W3085002566 creator A5044608838 @default.
- W3085002566 creator A5061843207 @default.
- W3085002566 date "2020-10-02" @default.
- W3085002566 modified "2023-10-16" @default.
- W3085002566 title "Model Forecast Error Correction Based on the Local Dynamical Analog Method: An Example Application to the ENSO Forecast by an Intermediate Coupled Model" @default.
- W3085002566 cites W1482932425 @default.
- W3085002566 cites W1511816663 @default.
- W3085002566 cites W1921449036 @default.
- W3085002566 cites W1966180832 @default.
- W3085002566 cites W1981166136 @default.
- W3085002566 cites W1982256029 @default.
- W3085002566 cites W1983066276 @default.
- W3085002566 cites W2007364338 @default.
- W3085002566 cites W2015007962 @default.
- W3085002566 cites W2026058014 @default.
- W3085002566 cites W2027768101 @default.
- W3085002566 cites W2035891155 @default.
- W3085002566 cites W2046534255 @default.
- W3085002566 cites W2069557812 @default.
- W3085002566 cites W2077315026 @default.
- W3085002566 cites W2094482518 @default.
- W3085002566 cites W2097507139 @default.
- W3085002566 cites W2099672912 @default.
- W3085002566 cites W2099905395 @default.
- W3085002566 cites W2104539845 @default.
- W3085002566 cites W2111229824 @default.
- W3085002566 cites W2113077344 @default.
- W3085002566 cites W2128469217 @default.
- W3085002566 cites W2133243184 @default.
- W3085002566 cites W2155164768 @default.
- W3085002566 cites W2174601942 @default.
- W3085002566 cites W2179925707 @default.
- W3085002566 cites W2233013200 @default.
- W3085002566 cites W2507318219 @default.
- W3085002566 cites W2592680392 @default.
- W3085002566 cites W2608677490 @default.
- W3085002566 cites W2618319331 @default.
- W3085002566 cites W2748401178 @default.
- W3085002566 cites W2760415775 @default.
- W3085002566 cites W2768733092 @default.
- W3085002566 cites W2897470801 @default.
- W3085002566 doi "https://doi.org/10.1029/2020gl088986" @default.
- W3085002566 hasPublicationYear "2020" @default.
- W3085002566 type Work @default.
- W3085002566 sameAs 3085002566 @default.
- W3085002566 citedByCount "4" @default.
- W3085002566 countsByYear W30850025662021 @default.
- W3085002566 countsByYear W30850025662022 @default.
- W3085002566 countsByYear W30850025662023 @default.
- W3085002566 crossrefType "journal-article" @default.
- W3085002566 hasAuthorship W3085002566A5010292234 @default.
- W3085002566 hasAuthorship W3085002566A5019815062 @default.
- W3085002566 hasAuthorship W3085002566A5023933852 @default.
- W3085002566 hasAuthorship W3085002566A5025543473 @default.
- W3085002566 hasAuthorship W3085002566A5030983879 @default.
- W3085002566 hasAuthorship W3085002566A5044608838 @default.
- W3085002566 hasAuthorship W3085002566A5061843207 @default.
- W3085002566 hasConcept C11413529 @default.
- W3085002566 hasConcept C127313418 @default.
- W3085002566 hasConcept C127413603 @default.
- W3085002566 hasConcept C201995342 @default.
- W3085002566 hasConcept C2524010 @default.
- W3085002566 hasConcept C2778439541 @default.
- W3085002566 hasConcept C2780451532 @default.
- W3085002566 hasConcept C33923547 @default.
- W3085002566 hasConcept C41008148 @default.
- W3085002566 hasConcept C49204034 @default.
- W3085002566 hasConcept C507956050 @default.
- W3085002566 hasConcept C54355233 @default.
- W3085002566 hasConcept C57691317 @default.
- W3085002566 hasConcept C86803240 @default.
- W3085002566 hasConceptScore W3085002566C11413529 @default.
- W3085002566 hasConceptScore W3085002566C127313418 @default.
- W3085002566 hasConceptScore W3085002566C127413603 @default.
- W3085002566 hasConceptScore W3085002566C201995342 @default.
- W3085002566 hasConceptScore W3085002566C2524010 @default.
- W3085002566 hasConceptScore W3085002566C2778439541 @default.
- W3085002566 hasConceptScore W3085002566C2780451532 @default.
- W3085002566 hasConceptScore W3085002566C33923547 @default.
- W3085002566 hasConceptScore W3085002566C41008148 @default.
- W3085002566 hasConceptScore W3085002566C49204034 @default.
- W3085002566 hasConceptScore W3085002566C507956050 @default.
- W3085002566 hasConceptScore W3085002566C54355233 @default.
- W3085002566 hasConceptScore W3085002566C57691317 @default.
- W3085002566 hasConceptScore W3085002566C86803240 @default.
- W3085002566 hasFunder F4320321001 @default.
- W3085002566 hasFunder F4320335787 @default.
- W3085002566 hasIssue "19" @default.
- W3085002566 hasLocation W30850025661 @default.
- W3085002566 hasOpenAccess W3085002566 @default.
- W3085002566 hasPrimaryLocation W30850025661 @default.
- W3085002566 hasRelatedWork W2038341015 @default.
- W3085002566 hasRelatedWork W2063575545 @default.