Matches in SemOpenAlex for { <https://semopenalex.org/work/W3085048973> ?p ?o ?g. }
- W3085048973 abstract "Abstract Survivors following very premature birth (i.e., ≤ 32 weeks gestational age) remain at high risk for neurodevelopmental impairments. Recent advances in deep learning techniques have made it possible to aid the early diagnosis and prognosis of neurodevelopmental deficits. Deep learning models typically require training on large datasets, and unfortunately, large neuroimaging datasets with clinical outcome annotations are typically limited, especially in neonates. Transfer learning represents an important step to solve the fundamental problem of insufficient training data in deep learning. In this work, we developed a multi-task, multi-stage deep transfer learning framework using the fusion of brain connectome and clinical data for early joint prediction of multiple abnormal neurodevelopmental (cognitive, language and motor) outcomes at 2 years corrected age in very preterm infants. The proposed framework maximizes the value of both available annotated and non-annotated data in model training by performing both supervised and unsupervised learning. We first pre-trained a deep neural network prototype in a supervised fashion using 884 older children and adult subjects, and then re-trained this prototype using 291 neonatal subjects without supervision. Finally, we fine-tuned and validated the pre-trained model using 33 preterm infants. Our proposed model identified very preterm infants at high-risk for cognitive, language, and motor deficits at 2 years corrected age with an area under the receiver operating characteristic curve of 0.86, 0.66 and 0.84, respectively. Employing such a deep learning model, once externally validated, may facilitate risk stratification at term-equivalent age for early identification of long-term neurodevelopmental deficits and targeted early interventions to improve clinical outcomes in very preterm infants." @default.
- W3085048973 created "2020-09-21" @default.
- W3085048973 creator A5011185996 @default.
- W3085048973 creator A5036096547 @default.
- W3085048973 creator A5040059979 @default.
- W3085048973 creator A5065482772 @default.
- W3085048973 creator A5073691713 @default.
- W3085048973 creator A5076055846 @default.
- W3085048973 creator A5081900779 @default.
- W3085048973 date "2020-09-15" @default.
- W3085048973 modified "2023-10-14" @default.
- W3085048973 title "A multi-task, multi-stage deep transfer learning model for early prediction of neurodevelopment in very preterm infants" @default.
- W3085048973 cites W1964472550 @default.
- W3085048973 cites W1972498024 @default.
- W3085048973 cites W1981976602 @default.
- W3085048973 cites W1983183519 @default.
- W3085048973 cites W1990134753 @default.
- W3085048973 cites W2005821483 @default.
- W3085048973 cites W2005955994 @default.
- W3085048973 cites W2013228103 @default.
- W3085048973 cites W2013848047 @default.
- W3085048973 cites W2018555539 @default.
- W3085048973 cites W2039112885 @default.
- W3085048973 cites W2040412343 @default.
- W3085048973 cites W2058046532 @default.
- W3085048973 cites W2067934990 @default.
- W3085048973 cites W2075941883 @default.
- W3085048973 cites W2100592864 @default.
- W3085048973 cites W2115733720 @default.
- W3085048973 cites W2119290186 @default.
- W3085048973 cites W2126888533 @default.
- W3085048973 cites W2128752075 @default.
- W3085048973 cites W2130010412 @default.
- W3085048973 cites W2130352976 @default.
- W3085048973 cites W2137965042 @default.
- W3085048973 cites W2138673644 @default.
- W3085048973 cites W2139708397 @default.
- W3085048973 cites W2141677521 @default.
- W3085048973 cites W2148044501 @default.
- W3085048973 cites W2165698076 @default.
- W3085048973 cites W2167868121 @default.
- W3085048973 cites W2253429366 @default.
- W3085048973 cites W2461258313 @default.
- W3085048973 cites W2507387536 @default.
- W3085048973 cites W2522924024 @default.
- W3085048973 cites W2526511911 @default.
- W3085048973 cites W2552159460 @default.
- W3085048973 cites W2556579141 @default.
- W3085048973 cites W2559553341 @default.
- W3085048973 cites W2572512422 @default.
- W3085048973 cites W2602001632 @default.
- W3085048973 cites W2611485120 @default.
- W3085048973 cites W2685796289 @default.
- W3085048973 cites W2726168273 @default.
- W3085048973 cites W2752558629 @default.
- W3085048973 cites W2753070562 @default.
- W3085048973 cites W2768091600 @default.
- W3085048973 cites W2768551925 @default.
- W3085048973 cites W2769869753 @default.
- W3085048973 cites W2784191523 @default.
- W3085048973 cites W2791956678 @default.
- W3085048973 cites W2796345789 @default.
- W3085048973 cites W2810012895 @default.
- W3085048973 cites W2916365351 @default.
- W3085048973 cites W2916671809 @default.
- W3085048973 cites W2919115771 @default.
- W3085048973 cites W2963499979 @default.
- W3085048973 cites W2970538514 @default.
- W3085048973 cites W2994664327 @default.
- W3085048973 cites W3015582950 @default.
- W3085048973 cites W3016228419 @default.
- W3085048973 cites W4255748175 @default.
- W3085048973 doi "https://doi.org/10.1038/s41598-020-71914-x" @default.
- W3085048973 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7492237" @default.
- W3085048973 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32934282" @default.
- W3085048973 hasPublicationYear "2020" @default.
- W3085048973 type Work @default.
- W3085048973 sameAs 3085048973 @default.
- W3085048973 citedByCount "20" @default.
- W3085048973 countsByYear W30850489732021 @default.
- W3085048973 countsByYear W30850489732022 @default.
- W3085048973 countsByYear W30850489732023 @default.
- W3085048973 crossrefType "journal-article" @default.
- W3085048973 hasAuthorship W3085048973A5011185996 @default.
- W3085048973 hasAuthorship W3085048973A5036096547 @default.
- W3085048973 hasAuthorship W3085048973A5040059979 @default.
- W3085048973 hasAuthorship W3085048973A5065482772 @default.
- W3085048973 hasAuthorship W3085048973A5073691713 @default.
- W3085048973 hasAuthorship W3085048973A5076055846 @default.
- W3085048973 hasAuthorship W3085048973A5081900779 @default.
- W3085048973 hasBestOaLocation W30850489731 @default.
- W3085048973 hasConcept C108583219 @default.
- W3085048973 hasConcept C118552586 @default.
- W3085048973 hasConcept C119857082 @default.
- W3085048973 hasConcept C147168706 @default.
- W3085048973 hasConcept C150899416 @default.
- W3085048973 hasConcept C154945302 @default.
- W3085048973 hasConcept C169900460 @default.
- W3085048973 hasConcept C2778376644 @default.
- W3085048973 hasConcept C2779234561 @default.