Matches in SemOpenAlex for { <https://semopenalex.org/work/W3085129539> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3085129539 endingPage "032061" @default.
- W3085129539 startingPage "032061" @default.
- W3085129539 abstract "Gears are condemning element in a diverse industrial application such as machine tool and gearboxes. Many contributing losses occur due to an unexpected breakdown of the gears. Recently, in many researches fault diagonsis has been the most contributing content in the gears. Vibration analysis has been used as a deciding tool for several machinery maintenance decisions. The most efficient form of indication is by the increment in the vibration level. By measuring and analysing the machine's vibration, it is possible to determine both the nature and severity of the defect, and hence predict the machine's failure. The vibration signal of a gearbox carries the signature of the fault in the gears and early fault detection of the gearbox is possible by analysing the vibration signal using different signal processing techniques. The present work depicts about the predictive maintenance program implementation based on the experimental data set of the gear box assembly in wind turbines by using the Artificial neural network and comprises of the prediction of variation in the accuracy of the experimental data set. The code values are generated using python 3.7 version software. The accuracy of the Model was found to be 61.86%. This accuracy indicates the functioning of the gears and can also be used for predictions in real time scenario." @default.
- W3085129539 created "2020-09-21" @default.
- W3085129539 creator A5000930547 @default.
- W3085129539 creator A5012470455 @default.
- W3085129539 creator A5039834843 @default.
- W3085129539 creator A5049486010 @default.
- W3085129539 creator A5052039335 @default.
- W3085129539 date "2020-09-12" @default.
- W3085129539 modified "2023-09-25" @default.
- W3085129539 title "Condition based monitoring for fault detection in windmill gear box using artificial neural network" @default.
- W3085129539 cites W1994912162 @default.
- W3085129539 cites W2012634158 @default.
- W3085129539 cites W2015701355 @default.
- W3085129539 cites W2048522269 @default.
- W3085129539 cites W2131065845 @default.
- W3085129539 cites W2153987021 @default.
- W3085129539 doi "https://doi.org/10.1088/1757-899x/912/3/032061" @default.
- W3085129539 hasPublicationYear "2020" @default.
- W3085129539 type Work @default.
- W3085129539 sameAs 3085129539 @default.
- W3085129539 citedByCount "0" @default.
- W3085129539 crossrefType "journal-article" @default.
- W3085129539 hasAuthorship W3085129539A5000930547 @default.
- W3085129539 hasAuthorship W3085129539A5012470455 @default.
- W3085129539 hasAuthorship W3085129539A5039834843 @default.
- W3085129539 hasAuthorship W3085129539A5049486010 @default.
- W3085129539 hasAuthorship W3085129539A5052039335 @default.
- W3085129539 hasBestOaLocation W30851295391 @default.
- W3085129539 hasConcept C104267543 @default.
- W3085129539 hasConcept C111919701 @default.
- W3085129539 hasConcept C119599485 @default.
- W3085129539 hasConcept C121332964 @default.
- W3085129539 hasConcept C127313418 @default.
- W3085129539 hasConcept C127413603 @default.
- W3085129539 hasConcept C154945302 @default.
- W3085129539 hasConcept C165205528 @default.
- W3085129539 hasConcept C175551986 @default.
- W3085129539 hasConcept C198394728 @default.
- W3085129539 hasConcept C199360897 @default.
- W3085129539 hasConcept C24326235 @default.
- W3085129539 hasConcept C24890656 @default.
- W3085129539 hasConcept C2775846686 @default.
- W3085129539 hasConcept C2777904410 @default.
- W3085129539 hasConcept C2779843651 @default.
- W3085129539 hasConcept C41008148 @default.
- W3085129539 hasConcept C50644808 @default.
- W3085129539 hasConcept C519991488 @default.
- W3085129539 hasConcept C84462506 @default.
- W3085129539 hasConceptScore W3085129539C104267543 @default.
- W3085129539 hasConceptScore W3085129539C111919701 @default.
- W3085129539 hasConceptScore W3085129539C119599485 @default.
- W3085129539 hasConceptScore W3085129539C121332964 @default.
- W3085129539 hasConceptScore W3085129539C127313418 @default.
- W3085129539 hasConceptScore W3085129539C127413603 @default.
- W3085129539 hasConceptScore W3085129539C154945302 @default.
- W3085129539 hasConceptScore W3085129539C165205528 @default.
- W3085129539 hasConceptScore W3085129539C175551986 @default.
- W3085129539 hasConceptScore W3085129539C198394728 @default.
- W3085129539 hasConceptScore W3085129539C199360897 @default.
- W3085129539 hasConceptScore W3085129539C24326235 @default.
- W3085129539 hasConceptScore W3085129539C24890656 @default.
- W3085129539 hasConceptScore W3085129539C2775846686 @default.
- W3085129539 hasConceptScore W3085129539C2777904410 @default.
- W3085129539 hasConceptScore W3085129539C2779843651 @default.
- W3085129539 hasConceptScore W3085129539C41008148 @default.
- W3085129539 hasConceptScore W3085129539C50644808 @default.
- W3085129539 hasConceptScore W3085129539C519991488 @default.
- W3085129539 hasConceptScore W3085129539C84462506 @default.
- W3085129539 hasLocation W30851295391 @default.
- W3085129539 hasOpenAccess W3085129539 @default.
- W3085129539 hasPrimaryLocation W30851295391 @default.
- W3085129539 hasRelatedWork W2024913001 @default.
- W3085129539 hasRelatedWork W2084897638 @default.
- W3085129539 hasRelatedWork W2087111571 @default.
- W3085129539 hasRelatedWork W2102989017 @default.
- W3085129539 hasRelatedWork W2352072136 @default.
- W3085129539 hasRelatedWork W2354992014 @default.
- W3085129539 hasRelatedWork W2363582487 @default.
- W3085129539 hasRelatedWork W2390258677 @default.
- W3085129539 hasRelatedWork W2392586919 @default.
- W3085129539 hasRelatedWork W3208697673 @default.
- W3085129539 hasVolume "912" @default.
- W3085129539 isParatext "false" @default.
- W3085129539 isRetracted "false" @default.
- W3085129539 magId "3085129539" @default.
- W3085129539 workType "article" @default.