Matches in SemOpenAlex for { <https://semopenalex.org/work/W3085149612> ?p ?o ?g. }
- W3085149612 abstract "Abstract Background Parkinson’s Disease (PD) is a clinically diagnosed neurodegenerative disorder that affects both motor and non-motor neural circuits. Speech deterioration (hypokinetic dysarthria) is a common symptom, which often presents early in the disease course. Machine learning can help movement disorders specialists improve their diagnostic accuracy using non-invasive and inexpensive voice recordings. Method We used “Parkinson Dataset with Replicated Acoustic Features Data Set” from the UCI-Machine Learning repository. The dataset included 44 speech-test based acoustic features from patients with PD and controls. We analyzed the data using various machine learning algorithms including Light and Extreme Gradient Boosting, Random Forest, Support Vector Machines, K-nearest neighborhood, Least Absolute Shrinkage and Selection Operator Regression, as well as logistic regression. We also implemented a variable importance analysis to identify important variables classifying patients with PD. Results The cohort included a total of 80 subjects: 40 patients with PD (55% men) and 40 controls (67.5% men). Disease duration was 5 years or less for all subjects, with a mean Unified Parkinson’s Disease Rating Scale (UPDRS) score of 19.6 (SD 8.1), and none were taking PD medication. The mean age for PD subjects and controls was 69.6 (SD 7.8) and 66.4 (SD 8.4), respectively. Our best-performing model used Light Gradient Boosting to provide an AUC of 0.951 with 95% confidence interval 0.946–0.955 in 4-fold cross validation using only seven acoustic features. Conclusions Machine learning can accurately detect Parkinson’s disease using an inexpensive and non-invasive voice recording. Light Gradient Boosting outperformed other machine learning algorithms. Such approaches could be used to inexpensively screen large patient populations for Parkinson’s disease." @default.
- W3085149612 created "2020-09-21" @default.
- W3085149612 creator A5027592744 @default.
- W3085149612 creator A5029944513 @default.
- W3085149612 creator A5035151150 @default.
- W3085149612 creator A5047770817 @default.
- W3085149612 date "2020-09-15" @default.
- W3085149612 modified "2023-10-16" @default.
- W3085149612 title "Gradient boosting for Parkinson’s disease diagnosis from voice recordings" @default.
- W3085149612 cites W1561072761 @default.
- W3085149612 cites W1678356000 @default.
- W3085149612 cites W1987349122 @default.
- W3085149612 cites W2000955547 @default.
- W3085149612 cites W2006199542 @default.
- W3085149612 cites W2015110463 @default.
- W3085149612 cites W2038711075 @default.
- W3085149612 cites W2046369628 @default.
- W3085149612 cites W2049963988 @default.
- W3085149612 cites W2070493638 @default.
- W3085149612 cites W2071106347 @default.
- W3085149612 cites W2084553926 @default.
- W3085149612 cites W2092462980 @default.
- W3085149612 cites W2106821521 @default.
- W3085149612 cites W2144212795 @default.
- W3085149612 cites W2154029067 @default.
- W3085149612 cites W2170517798 @default.
- W3085149612 cites W2176431310 @default.
- W3085149612 cites W2179402427 @default.
- W3085149612 cites W2281923782 @default.
- W3085149612 cites W2328176404 @default.
- W3085149612 cites W2396925529 @default.
- W3085149612 cites W2403629665 @default.
- W3085149612 cites W2404790171 @default.
- W3085149612 cites W2590761639 @default.
- W3085149612 cites W2811255424 @default.
- W3085149612 cites W2971654438 @default.
- W3085149612 cites W3102476541 @default.
- W3085149612 cites W49996880 @default.
- W3085149612 doi "https://doi.org/10.1186/s12911-020-01250-7" @default.
- W3085149612 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7493334" @default.
- W3085149612 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32933493" @default.
- W3085149612 hasPublicationYear "2020" @default.
- W3085149612 type Work @default.
- W3085149612 sameAs 3085149612 @default.
- W3085149612 citedByCount "35" @default.
- W3085149612 countsByYear W30851496122021 @default.
- W3085149612 countsByYear W30851496122022 @default.
- W3085149612 countsByYear W30851496122023 @default.
- W3085149612 crossrefType "journal-article" @default.
- W3085149612 hasAuthorship W3085149612A5027592744 @default.
- W3085149612 hasAuthorship W3085149612A5029944513 @default.
- W3085149612 hasAuthorship W3085149612A5035151150 @default.
- W3085149612 hasAuthorship W3085149612A5047770817 @default.
- W3085149612 hasBestOaLocation W30851496121 @default.
- W3085149612 hasConcept C105795698 @default.
- W3085149612 hasConcept C119857082 @default.
- W3085149612 hasConcept C12267149 @default.
- W3085149612 hasConcept C126322002 @default.
- W3085149612 hasConcept C151956035 @default.
- W3085149612 hasConcept C154945302 @default.
- W3085149612 hasConcept C169258074 @default.
- W3085149612 hasConcept C2777639682 @default.
- W3085149612 hasConcept C2779134260 @default.
- W3085149612 hasConcept C2779734285 @default.
- W3085149612 hasConcept C33923547 @default.
- W3085149612 hasConcept C41008148 @default.
- W3085149612 hasConcept C44249647 @default.
- W3085149612 hasConcept C46686674 @default.
- W3085149612 hasConcept C548259974 @default.
- W3085149612 hasConcept C58471807 @default.
- W3085149612 hasConcept C70153297 @default.
- W3085149612 hasConcept C71924100 @default.
- W3085149612 hasConcept C83546350 @default.
- W3085149612 hasConceptScore W3085149612C105795698 @default.
- W3085149612 hasConceptScore W3085149612C119857082 @default.
- W3085149612 hasConceptScore W3085149612C12267149 @default.
- W3085149612 hasConceptScore W3085149612C126322002 @default.
- W3085149612 hasConceptScore W3085149612C151956035 @default.
- W3085149612 hasConceptScore W3085149612C154945302 @default.
- W3085149612 hasConceptScore W3085149612C169258074 @default.
- W3085149612 hasConceptScore W3085149612C2777639682 @default.
- W3085149612 hasConceptScore W3085149612C2779134260 @default.
- W3085149612 hasConceptScore W3085149612C2779734285 @default.
- W3085149612 hasConceptScore W3085149612C33923547 @default.
- W3085149612 hasConceptScore W3085149612C41008148 @default.
- W3085149612 hasConceptScore W3085149612C44249647 @default.
- W3085149612 hasConceptScore W3085149612C46686674 @default.
- W3085149612 hasConceptScore W3085149612C548259974 @default.
- W3085149612 hasConceptScore W3085149612C58471807 @default.
- W3085149612 hasConceptScore W3085149612C70153297 @default.
- W3085149612 hasConceptScore W3085149612C71924100 @default.
- W3085149612 hasConceptScore W3085149612C83546350 @default.
- W3085149612 hasIssue "1" @default.
- W3085149612 hasLocation W30851496121 @default.
- W3085149612 hasLocation W30851496122 @default.
- W3085149612 hasLocation W30851496123 @default.
- W3085149612 hasLocation W30851496124 @default.
- W3085149612 hasLocation W30851496125 @default.
- W3085149612 hasOpenAccess W3085149612 @default.
- W3085149612 hasPrimaryLocation W30851496121 @default.