Matches in SemOpenAlex for { <https://semopenalex.org/work/W3085208059> ?p ?o ?g. }
- W3085208059 abstract "Abstract Background Cryo-electron tomography is an important and powerful technique to explore the structure, abundance, and location of ultrastructure in a near-native state. It contains detailed information of all macromolecular complexes in a sample cell. However, due to the compact and crowded status, the missing edge effect, and low signal to noise ratio (SNR), it is extremely challenging to recover such information with existing image processing methods. Cryo-electron tomogram simulation is an effective solution to test and optimize the performance of the above image processing methods. The simulated images could be regarded as the labeled data which covers a wide range of macromolecular complexes and ultrastructure. To approximate the crowded cellular environment, it is very important to pack these heterogeneous structures as tightly as possible. Besides, simulating non-deformable and deformable components under a unified framework also need to be achieved. Result In this paper, we proposed a unified framework for simulating crowded cryo-electron tomogram images including non-deformable macromolecular complexes and deformable ultrastructures. A macromolecule was approximated using multiple balls with fixed relative positions to reduce the vacuum volume. A ultrastructure, such as membrane and filament, was approximated using multiple balls with flexible relative positions so that this structure could deform under force field. In the experiment, 400 macromolecules of 20 representative types were packed into simulated cytoplasm by our framework, and numerical verification proved that our method has a smaller volume and higher compression ratio than the baseline single-ball model. We also packed filaments, membranes and macromolecules together, to obtain a simulated cryo-electron tomogram image with deformable structures. The simulated results are closer to the real Cryo-ET, making the analysis more difficult. The DOG particle picking method and the image segmentation method are tested on our simulation data, and the experimental results show that these methods still have much room for improvement. Conclusion The proposed multi-ball model can achieve more crowded packaging results and contains richer elements with different properties to obtain more realistic cryo-electron tomogram simulation. This enables users to simulate cryo-electron tomogram images with non-deformable macromolecular complexes and deformable ultrastructures under a unified framework. To illustrate the advantages of our framework in improving the compression ratio, we calculated the volume of simulated macromolecular under our multi-ball method and traditional single-ball method. We also performed the packing experiment of filaments and membranes to demonstrate the simulation ability of deformable structures. Our method can be used to do a benchmark by generating large labeled cryo-ET dataset and evaluating existing image processing methods. Since the content of the simulated cryo-ET is more complex and crowded compared with previous ones, it will pose a greater challenge to existing image processing methods." @default.
- W3085208059 created "2020-09-21" @default.
- W3085208059 creator A5000807861 @default.
- W3085208059 creator A5006397040 @default.
- W3085208059 creator A5009607229 @default.
- W3085208059 creator A5009624071 @default.
- W3085208059 creator A5018603502 @default.
- W3085208059 creator A5022451527 @default.
- W3085208059 creator A5034470550 @default.
- W3085208059 creator A5034528848 @default.
- W3085208059 creator A5055794780 @default.
- W3085208059 creator A5086172600 @default.
- W3085208059 creator A5091780182 @default.
- W3085208059 date "2020-09-09" @default.
- W3085208059 modified "2023-10-10" @default.
- W3085208059 title "A unified framework for packing deformable and non-deformable subcellular structures in crowded cryo-electron tomogram simulation" @default.
- W3085208059 cites W1987111416 @default.
- W3085208059 cites W2001923477 @default.
- W3085208059 cites W2029667189 @default.
- W3085208059 cites W2034526679 @default.
- W3085208059 cites W2037373017 @default.
- W3085208059 cites W2038302435 @default.
- W3085208059 cites W2042455841 @default.
- W3085208059 cites W2055905702 @default.
- W3085208059 cites W2101174895 @default.
- W3085208059 cites W2130479394 @default.
- W3085208059 cites W2132629607 @default.
- W3085208059 cites W2142694980 @default.
- W3085208059 cites W2147700328 @default.
- W3085208059 cites W2150981663 @default.
- W3085208059 cites W2234184493 @default.
- W3085208059 cites W2265299935 @default.
- W3085208059 cites W2292820626 @default.
- W3085208059 cites W2297140690 @default.
- W3085208059 cites W2314292783 @default.
- W3085208059 cites W2413334978 @default.
- W3085208059 cites W2519618428 @default.
- W3085208059 cites W2530452081 @default.
- W3085208059 cites W2549601578 @default.
- W3085208059 cites W2569402566 @default.
- W3085208059 cites W2626299884 @default.
- W3085208059 cites W2905461731 @default.
- W3085208059 cites W2911244719 @default.
- W3085208059 cites W2963568497 @default.
- W3085208059 cites W2963737860 @default.
- W3085208059 cites W2969102937 @default.
- W3085208059 cites W2984623468 @default.
- W3085208059 cites W3017052371 @default.
- W3085208059 cites W3025384351 @default.
- W3085208059 cites W3034834591 @default.
- W3085208059 doi "https://doi.org/10.1186/s12859-020-03660-w" @default.
- W3085208059 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7488303" @default.
- W3085208059 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32907544" @default.
- W3085208059 hasPublicationYear "2020" @default.
- W3085208059 type Work @default.
- W3085208059 sameAs 3085208059 @default.
- W3085208059 citedByCount "4" @default.
- W3085208059 countsByYear W30852080592020 @default.
- W3085208059 countsByYear W30852080592021 @default.
- W3085208059 countsByYear W30852080592022 @default.
- W3085208059 countsByYear W30852080592023 @default.
- W3085208059 crossrefType "journal-article" @default.
- W3085208059 hasAuthorship W3085208059A5000807861 @default.
- W3085208059 hasAuthorship W3085208059A5006397040 @default.
- W3085208059 hasAuthorship W3085208059A5009607229 @default.
- W3085208059 hasAuthorship W3085208059A5009624071 @default.
- W3085208059 hasAuthorship W3085208059A5018603502 @default.
- W3085208059 hasAuthorship W3085208059A5022451527 @default.
- W3085208059 hasAuthorship W3085208059A5034470550 @default.
- W3085208059 hasAuthorship W3085208059A5034528848 @default.
- W3085208059 hasAuthorship W3085208059A5055794780 @default.
- W3085208059 hasAuthorship W3085208059A5086172600 @default.
- W3085208059 hasAuthorship W3085208059A5091780182 @default.
- W3085208059 hasBestOaLocation W30852080591 @default.
- W3085208059 hasConcept C105702510 @default.
- W3085208059 hasConcept C11413529 @default.
- W3085208059 hasConcept C120665830 @default.
- W3085208059 hasConcept C121332964 @default.
- W3085208059 hasConcept C159985019 @default.
- W3085208059 hasConcept C163716698 @default.
- W3085208059 hasConcept C185592680 @default.
- W3085208059 hasConcept C186060115 @default.
- W3085208059 hasConcept C192562407 @default.
- W3085208059 hasConcept C193016168 @default.
- W3085208059 hasConcept C204323151 @default.
- W3085208059 hasConcept C204389451 @default.
- W3085208059 hasConcept C2777993257 @default.
- W3085208059 hasConcept C41008148 @default.
- W3085208059 hasConcept C55493867 @default.
- W3085208059 hasConcept C75806775 @default.
- W3085208059 hasConcept C86803240 @default.
- W3085208059 hasConcept C87555872 @default.
- W3085208059 hasConcept C93877712 @default.
- W3085208059 hasConceptScore W3085208059C105702510 @default.
- W3085208059 hasConceptScore W3085208059C11413529 @default.
- W3085208059 hasConceptScore W3085208059C120665830 @default.
- W3085208059 hasConceptScore W3085208059C121332964 @default.
- W3085208059 hasConceptScore W3085208059C159985019 @default.
- W3085208059 hasConceptScore W3085208059C163716698 @default.
- W3085208059 hasConceptScore W3085208059C185592680 @default.