Matches in SemOpenAlex for { <https://semopenalex.org/work/W3085245963> ?p ?o ?g. }
- W3085245963 endingPage "16" @default.
- W3085245963 startingPage "1" @default.
- W3085245963 abstract "Deep learning has a strong feature learning ability, which has proved its effectiveness in fault prediction and remaining useful life prediction of rotatory machine. However, training a deep network from scratch requires a large amount of training data and is time-consuming. In the practical model training process, it is difficult for the deep model to converge when the parameter initialization is inappropriate, which results in poor prediction performance. In this paper, a novel deep learning framework is proposed to predict the remaining useful life of rotatory machine with high accuracy. Firstly, model parameters and feature learning ability of the pretrained model are transferred to the new network by means of transfer learning to achieve reasonable initialization. Then, the specific sensor signals are converted to RGB image as the specific task data to fine-tune the parameters of the high-level network structure. The features extracted from the pretrained network are the input into the Bidirectional Long Short-Term Memory to obtain the RUL prediction results. The ability of LSTM to model sequence signals and the dynamic learning ability of bidirectional propagation to time information contribute to accurate RUL prediction. Finally, the deep model proposed in this paper is tested on the sensor signal dataset of bearing and gearbox. The high accuracy prediction results show the superiority of the transfer learning-based sequential network in RUL prediction." @default.
- W3085245963 created "2020-09-21" @default.
- W3085245963 creator A5005780325 @default.
- W3085245963 creator A5023989851 @default.
- W3085245963 creator A5025027033 @default.
- W3085245963 creator A5049341927 @default.
- W3085245963 creator A5056826987 @default.
- W3085245963 creator A5066081421 @default.
- W3085245963 date "2020-09-14" @default.
- W3085245963 modified "2023-10-18" @default.
- W3085245963 title "Sequential Network with Residual Neural Network for Rotatory Machine Remaining Useful Life Prediction Using Deep Transfer Learning" @default.
- W3085245963 cites W1597576211 @default.
- W3085245963 cites W2045410198 @default.
- W3085245963 cites W2064675550 @default.
- W3085245963 cites W2160815625 @default.
- W3085245963 cites W2287029277 @default.
- W3085245963 cites W2324044936 @default.
- W3085245963 cites W2463813940 @default.
- W3085245963 cites W2593519057 @default.
- W3085245963 cites W2595657631 @default.
- W3085245963 cites W2612904117 @default.
- W3085245963 cites W2619736447 @default.
- W3085245963 cites W2744632264 @default.
- W3085245963 cites W2745946363 @default.
- W3085245963 cites W2763583057 @default.
- W3085245963 cites W2769634371 @default.
- W3085245963 cites W2772084711 @default.
- W3085245963 cites W2783606427 @default.
- W3085245963 cites W2790896200 @default.
- W3085245963 cites W2799611325 @default.
- W3085245963 cites W2805330622 @default.
- W3085245963 cites W2807784220 @default.
- W3085245963 cites W2810292802 @default.
- W3085245963 cites W2883085683 @default.
- W3085245963 cites W2884001105 @default.
- W3085245963 cites W2886506350 @default.
- W3085245963 cites W2887782657 @default.
- W3085245963 cites W2892709813 @default.
- W3085245963 cites W2894196255 @default.
- W3085245963 cites W2900063678 @default.
- W3085245963 cites W2900529838 @default.
- W3085245963 cites W2904460913 @default.
- W3085245963 cites W2919710279 @default.
- W3085245963 cites W2940499158 @default.
- W3085245963 cites W2994902374 @default.
- W3085245963 doi "https://doi.org/10.1155/2020/8888627" @default.
- W3085245963 hasPublicationYear "2020" @default.
- W3085245963 type Work @default.
- W3085245963 sameAs 3085245963 @default.
- W3085245963 citedByCount "4" @default.
- W3085245963 countsByYear W30852459632021 @default.
- W3085245963 countsByYear W30852459632022 @default.
- W3085245963 countsByYear W30852459632023 @default.
- W3085245963 crossrefType "journal-article" @default.
- W3085245963 hasAuthorship W3085245963A5005780325 @default.
- W3085245963 hasAuthorship W3085245963A5023989851 @default.
- W3085245963 hasAuthorship W3085245963A5025027033 @default.
- W3085245963 hasAuthorship W3085245963A5049341927 @default.
- W3085245963 hasAuthorship W3085245963A5056826987 @default.
- W3085245963 hasAuthorship W3085245963A5066081421 @default.
- W3085245963 hasBestOaLocation W30852459631 @default.
- W3085245963 hasConcept C108583219 @default.
- W3085245963 hasConcept C111919701 @default.
- W3085245963 hasConcept C11413529 @default.
- W3085245963 hasConcept C114466953 @default.
- W3085245963 hasConcept C119857082 @default.
- W3085245963 hasConcept C138885662 @default.
- W3085245963 hasConcept C150899416 @default.
- W3085245963 hasConcept C153180895 @default.
- W3085245963 hasConcept C154945302 @default.
- W3085245963 hasConcept C155512373 @default.
- W3085245963 hasConcept C199360897 @default.
- W3085245963 hasConcept C2776401178 @default.
- W3085245963 hasConcept C41008148 @default.
- W3085245963 hasConcept C41895202 @default.
- W3085245963 hasConcept C50644808 @default.
- W3085245963 hasConcept C98045186 @default.
- W3085245963 hasConceptScore W3085245963C108583219 @default.
- W3085245963 hasConceptScore W3085245963C111919701 @default.
- W3085245963 hasConceptScore W3085245963C11413529 @default.
- W3085245963 hasConceptScore W3085245963C114466953 @default.
- W3085245963 hasConceptScore W3085245963C119857082 @default.
- W3085245963 hasConceptScore W3085245963C138885662 @default.
- W3085245963 hasConceptScore W3085245963C150899416 @default.
- W3085245963 hasConceptScore W3085245963C153180895 @default.
- W3085245963 hasConceptScore W3085245963C154945302 @default.
- W3085245963 hasConceptScore W3085245963C155512373 @default.
- W3085245963 hasConceptScore W3085245963C199360897 @default.
- W3085245963 hasConceptScore W3085245963C2776401178 @default.
- W3085245963 hasConceptScore W3085245963C41008148 @default.
- W3085245963 hasConceptScore W3085245963C41895202 @default.
- W3085245963 hasConceptScore W3085245963C50644808 @default.
- W3085245963 hasConceptScore W3085245963C98045186 @default.
- W3085245963 hasFunder F4320321001 @default.
- W3085245963 hasLocation W30852459631 @default.
- W3085245963 hasOpenAccess W3085245963 @default.
- W3085245963 hasPrimaryLocation W30852459631 @default.
- W3085245963 hasRelatedWork W2889705046 @default.