Matches in SemOpenAlex for { <https://semopenalex.org/work/W3085277538> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3085277538 abstract "Relation classification is a very important Natural Language Processing (NLP) task to classify the relations from the plain text. It is one of the basic tasks of constructing a knowledge graph. Most existing state-of-the-art methods are primarily based on Convolutional Neural Networks(CNN) or Long Short-Term Memory Networks(LSTM). Recently, many pre-trained Bidirectional Encoder Representation from Transformers (BERT) models have been successfully used in the sequence labeling and many NLP classification tasks. Relation classification is different in that it needs to pay attention to not only the sentence information but also the entity pairs. In this paper, a Siamese BERT model with Adversarial Training (SBERT-AT) is proposed for relation classification. Firstly, the features of the entities and the sentence can be extracted separately to improve the performance of relation classification. Secondly, the adversarial training is applied to the SBERT architecture to improve the robustness. Lastly, the experimental results demonstrate that we achieve significant improvement compared with the other methods on real-world datasets." @default.
- W3085277538 created "2020-09-21" @default.
- W3085277538 creator A5003277904 @default.
- W3085277538 creator A5014348910 @default.
- W3085277538 creator A5017048122 @default.
- W3085277538 creator A5031220156 @default.
- W3085277538 creator A5049506273 @default.
- W3085277538 creator A5060511746 @default.
- W3085277538 date "2020-08-01" @default.
- W3085277538 modified "2023-10-16" @default.
- W3085277538 title "Siamese BERT Model with Adversarial Training for Relation Classification" @default.
- W3085277538 cites W1551842868 @default.
- W3085277538 cites W2060381885 @default.
- W3085277538 cites W2107598941 @default.
- W3085277538 cites W2155454737 @default.
- W3085277538 cites W2170872814 @default.
- W3085277538 cites W2251135946 @default.
- W3085277538 cites W2300469216 @default.
- W3085277538 cites W2513378248 @default.
- W3085277538 cites W2517194566 @default.
- W3085277538 cites W2558787362 @default.
- W3085277538 cites W2604610161 @default.
- W3085277538 cites W2625101390 @default.
- W3085277538 cites W2760600531 @default.
- W3085277538 cites W2803650874 @default.
- W3085277538 cites W2806643775 @default.
- W3085277538 cites W2892094955 @default.
- W3085277538 cites W2964022985 @default.
- W3085277538 cites W2984452801 @default.
- W3085277538 cites W3011411500 @default.
- W3085277538 cites W3088335873 @default.
- W3085277538 doi "https://doi.org/10.1109/icbk50248.2020.00049" @default.
- W3085277538 hasPublicationYear "2020" @default.
- W3085277538 type Work @default.
- W3085277538 sameAs 3085277538 @default.
- W3085277538 citedByCount "2" @default.
- W3085277538 countsByYear W30852775382023 @default.
- W3085277538 crossrefType "proceedings-article" @default.
- W3085277538 hasAuthorship W3085277538A5003277904 @default.
- W3085277538 hasAuthorship W3085277538A5014348910 @default.
- W3085277538 hasAuthorship W3085277538A5017048122 @default.
- W3085277538 hasAuthorship W3085277538A5031220156 @default.
- W3085277538 hasAuthorship W3085277538A5049506273 @default.
- W3085277538 hasAuthorship W3085277538A5060511746 @default.
- W3085277538 hasConcept C119857082 @default.
- W3085277538 hasConcept C124101348 @default.
- W3085277538 hasConcept C153294291 @default.
- W3085277538 hasConcept C154945302 @default.
- W3085277538 hasConcept C204321447 @default.
- W3085277538 hasConcept C205649164 @default.
- W3085277538 hasConcept C25343380 @default.
- W3085277538 hasConcept C2777211547 @default.
- W3085277538 hasConcept C37736160 @default.
- W3085277538 hasConcept C41008148 @default.
- W3085277538 hasConcept C51632099 @default.
- W3085277538 hasConceptScore W3085277538C119857082 @default.
- W3085277538 hasConceptScore W3085277538C124101348 @default.
- W3085277538 hasConceptScore W3085277538C153294291 @default.
- W3085277538 hasConceptScore W3085277538C154945302 @default.
- W3085277538 hasConceptScore W3085277538C204321447 @default.
- W3085277538 hasConceptScore W3085277538C205649164 @default.
- W3085277538 hasConceptScore W3085277538C25343380 @default.
- W3085277538 hasConceptScore W3085277538C2777211547 @default.
- W3085277538 hasConceptScore W3085277538C37736160 @default.
- W3085277538 hasConceptScore W3085277538C41008148 @default.
- W3085277538 hasConceptScore W3085277538C51632099 @default.
- W3085277538 hasLocation W30852775381 @default.
- W3085277538 hasOpenAccess W3085277538 @default.
- W3085277538 hasPrimaryLocation W30852775381 @default.
- W3085277538 hasRelatedWork W2995778637 @default.
- W3085277538 hasRelatedWork W3007517706 @default.
- W3085277538 hasRelatedWork W3107474891 @default.
- W3085277538 hasRelatedWork W4229335043 @default.
- W3085277538 hasRelatedWork W4288326114 @default.
- W3085277538 hasRelatedWork W4297821803 @default.
- W3085277538 hasRelatedWork W4311413936 @default.
- W3085277538 hasRelatedWork W4312306468 @default.
- W3085277538 hasRelatedWork W4312741812 @default.
- W3085277538 hasRelatedWork W4319792494 @default.
- W3085277538 isParatext "false" @default.
- W3085277538 isRetracted "false" @default.
- W3085277538 magId "3085277538" @default.
- W3085277538 workType "article" @default.