Matches in SemOpenAlex for { <https://semopenalex.org/work/W3085332562> ?p ?o ?g. }
- W3085332562 endingPage "125301" @default.
- W3085332562 startingPage "125301" @default.
- W3085332562 abstract "Extracting travel patterns from large-scaled vehicle trajectories is the key step to analyze urban travel characteristics, which can also provide effective strategies for urban traffic planning, construction, management and policy decision. In this study, we adopt the DBSCAN (Density-Based Spatial Clustering of Application with Noise) algorithm by fusing spatial, temporal and directional attributes extracting from vehicle trajectories Furthermore, LCS (Longest Common Sequences) is adopted to estimate spatial similarity, and two measurements are also designed to evaluate the temporal and directional similarity between trajectories. Accordingly, a statistical feature-based parameter optimization method is proposed in the clustering process to achieve reasonable clustering results. Finally, trajectory data collected from Harbin city, China are used to validate the effectiveness of clustering method. A comparison of clustering results considering different combination of attributes is conducted to further demonstrate the advantage of the proposed model." @default.
- W3085332562 created "2020-09-21" @default.
- W3085332562 creator A5040117777 @default.
- W3085332562 creator A5051238737 @default.
- W3085332562 creator A5077763192 @default.
- W3085332562 creator A5085025467 @default.
- W3085332562 date "2021-01-01" @default.
- W3085332562 modified "2023-10-15" @default.
- W3085332562 title "Exploring urban travel patterns using density-based clustering with multi-attributes from large-scaled vehicle trajectories" @default.
- W3085332562 cites W1227969505 @default.
- W3085332562 cites W1554980091 @default.
- W3085332562 cites W1971022913 @default.
- W3085332562 cites W1987971958 @default.
- W3085332562 cites W1989581936 @default.
- W3085332562 cites W2055567224 @default.
- W3085332562 cites W2060346657 @default.
- W3085332562 cites W2090227767 @default.
- W3085332562 cites W2107505299 @default.
- W3085332562 cites W2135909233 @default.
- W3085332562 cites W2144194027 @default.
- W3085332562 cites W2192089045 @default.
- W3085332562 cites W2611382369 @default.
- W3085332562 cites W2754990761 @default.
- W3085332562 cites W2756229568 @default.
- W3085332562 cites W2775153277 @default.
- W3085332562 cites W2793343370 @default.
- W3085332562 cites W2801297541 @default.
- W3085332562 cites W2801376377 @default.
- W3085332562 cites W2883326400 @default.
- W3085332562 cites W2887646164 @default.
- W3085332562 cites W2888335774 @default.
- W3085332562 cites W2895292469 @default.
- W3085332562 cites W2895578254 @default.
- W3085332562 cites W2896691616 @default.
- W3085332562 cites W2899138838 @default.
- W3085332562 cites W2899400847 @default.
- W3085332562 cites W2905283274 @default.
- W3085332562 cites W2945262834 @default.
- W3085332562 cites W2953640184 @default.
- W3085332562 cites W2956324374 @default.
- W3085332562 cites W4239785091 @default.
- W3085332562 doi "https://doi.org/10.1016/j.physa.2020.125301" @default.
- W3085332562 hasPublicationYear "2021" @default.
- W3085332562 type Work @default.
- W3085332562 sameAs 3085332562 @default.
- W3085332562 citedByCount "21" @default.
- W3085332562 countsByYear W30853325622020 @default.
- W3085332562 countsByYear W30853325622021 @default.
- W3085332562 countsByYear W30853325622022 @default.
- W3085332562 countsByYear W30853325622023 @default.
- W3085332562 crossrefType "journal-article" @default.
- W3085332562 hasAuthorship W3085332562A5040117777 @default.
- W3085332562 hasAuthorship W3085332562A5051238737 @default.
- W3085332562 hasAuthorship W3085332562A5077763192 @default.
- W3085332562 hasAuthorship W3085332562A5085025467 @default.
- W3085332562 hasConcept C103278499 @default.
- W3085332562 hasConcept C111919701 @default.
- W3085332562 hasConcept C115961682 @default.
- W3085332562 hasConcept C124101348 @default.
- W3085332562 hasConcept C153180895 @default.
- W3085332562 hasConcept C154945302 @default.
- W3085332562 hasConcept C33704608 @default.
- W3085332562 hasConcept C41008148 @default.
- W3085332562 hasConcept C46576248 @default.
- W3085332562 hasConcept C73555534 @default.
- W3085332562 hasConcept C94641424 @default.
- W3085332562 hasConcept C98045186 @default.
- W3085332562 hasConcept C99498987 @default.
- W3085332562 hasConceptScore W3085332562C103278499 @default.
- W3085332562 hasConceptScore W3085332562C111919701 @default.
- W3085332562 hasConceptScore W3085332562C115961682 @default.
- W3085332562 hasConceptScore W3085332562C124101348 @default.
- W3085332562 hasConceptScore W3085332562C153180895 @default.
- W3085332562 hasConceptScore W3085332562C154945302 @default.
- W3085332562 hasConceptScore W3085332562C33704608 @default.
- W3085332562 hasConceptScore W3085332562C41008148 @default.
- W3085332562 hasConceptScore W3085332562C46576248 @default.
- W3085332562 hasConceptScore W3085332562C73555534 @default.
- W3085332562 hasConceptScore W3085332562C94641424 @default.
- W3085332562 hasConceptScore W3085332562C98045186 @default.
- W3085332562 hasConceptScore W3085332562C99498987 @default.
- W3085332562 hasFunder F4320321001 @default.
- W3085332562 hasFunder F4320322866 @default.
- W3085332562 hasFunder F4320335439 @default.
- W3085332562 hasFunder F4320335888 @default.
- W3085332562 hasLocation W30853325621 @default.
- W3085332562 hasOpenAccess W3085332562 @default.
- W3085332562 hasPrimaryLocation W30853325621 @default.
- W3085332562 hasRelatedWork W2186523764 @default.
- W3085332562 hasRelatedWork W2187492663 @default.
- W3085332562 hasRelatedWork W2330870411 @default.
- W3085332562 hasRelatedWork W2368219397 @default.
- W3085332562 hasRelatedWork W2474073737 @default.
- W3085332562 hasRelatedWork W2503866109 @default.
- W3085332562 hasRelatedWork W2959625647 @default.
- W3085332562 hasRelatedWork W3004596345 @default.
- W3085332562 hasRelatedWork W3168814018 @default.
- W3085332562 hasRelatedWork W4290987788 @default.