Matches in SemOpenAlex for { <https://semopenalex.org/work/W3085334857> ?p ?o ?g. }
- W3085334857 abstract "A brain-computer interface (BCI) based on electroencephalography (EEG) can provide independent information exchange and control channels for the brain and the outside world. However, EEG signals come from multiple electrodes, the data of which can generate multiple features. How to select electrodes and features to improve classification performance has become an urgent problem to be solved. This paper proposes a deep convolutional neural network (CNN) structure with separated temporal and spatial filters, which selects the raw EEG signals of the electrode pairs over the motor cortex region as hybrid samples without any preprocessing or artificial feature extraction operations. In the proposed structure, a 5-layer CNN has been applied to learn EEG features, a 4-layer max pooling has been used to reduce dimensionality, and a fully-connected (FC) layer has been utilized for classification. Dropout and batch normalization are also employed to reduce the risk of overfitting. In the experiment, the 4 s EEG data of 10, 20, 60, and 100 subjects from the Physionet database are used as the data source, and the motor imaginations (MI) tasks are divided into four types: left fist, right fist, both fists, and both feet. The results indicate that the global averaged accuracy on group-level classification can reach 97.28%, the area under the receiver operating characteristic (ROC) curve stands out at 0.997, and the electrode pair with the highest accuracy on 10 subjects dataset is FC3-FC4, with 98.61%. The research results also show that this CNN classification method with minimal (2) electrode can obtain high accuracy, which is an advantage over other methods on the same database. This proposed approach provides a new idea for simplifying the design of BCI systems, and accelerates the process of clinical application." @default.
- W3085334857 created "2020-09-21" @default.
- W3085334857 creator A5002661071 @default.
- W3085334857 creator A5005817117 @default.
- W3085334857 creator A5011466106 @default.
- W3085334857 creator A5024818901 @default.
- W3085334857 creator A5041654385 @default.
- W3085334857 date "2020-09-15" @default.
- W3085334857 modified "2023-10-16" @default.
- W3085334857 title "A Simplified CNN Classification Method for MI-EEG via the Electrode Pairs Signals" @default.
- W3085334857 cites W1638736765 @default.
- W3085334857 cites W1694127584 @default.
- W3085334857 cites W1971790766 @default.
- W3085334857 cites W2112796928 @default.
- W3085334857 cites W2147854680 @default.
- W3085334857 cites W2150590430 @default.
- W3085334857 cites W2151669316 @default.
- W3085334857 cites W2162800060 @default.
- W3085334857 cites W2241109995 @default.
- W3085334857 cites W2295977970 @default.
- W3085334857 cites W2414309931 @default.
- W3085334857 cites W2521878393 @default.
- W3085334857 cites W2528974211 @default.
- W3085334857 cites W2551178936 @default.
- W3085334857 cites W2561907433 @default.
- W3085334857 cites W2589042230 @default.
- W3085334857 cites W2623656704 @default.
- W3085334857 cites W2741907166 @default.
- W3085334857 cites W2743838086 @default.
- W3085334857 cites W2755600035 @default.
- W3085334857 cites W2759483166 @default.
- W3085334857 cites W2786462089 @default.
- W3085334857 cites W2786771128 @default.
- W3085334857 cites W2797212135 @default.
- W3085334857 cites W2888355470 @default.
- W3085334857 cites W2898597600 @default.
- W3085334857 cites W2905915376 @default.
- W3085334857 cites W2911312349 @default.
- W3085334857 cites W2911969890 @default.
- W3085334857 cites W2914170396 @default.
- W3085334857 cites W2920570077 @default.
- W3085334857 cites W2920993277 @default.
- W3085334857 cites W2921231825 @default.
- W3085334857 cites W2944495915 @default.
- W3085334857 cites W2949263306 @default.
- W3085334857 cites W2954214015 @default.
- W3085334857 cites W2963037717 @default.
- W3085334857 cites W2963148318 @default.
- W3085334857 cites W2972075828 @default.
- W3085334857 cites W2972677165 @default.
- W3085334857 cites W2976359532 @default.
- W3085334857 cites W2977136224 @default.
- W3085334857 cites W2978943609 @default.
- W3085334857 cites W2980973675 @default.
- W3085334857 cites W2982305898 @default.
- W3085334857 cites W2985735373 @default.
- W3085334857 cites W2986984881 @default.
- W3085334857 cites W2987405155 @default.
- W3085334857 cites W2990721662 @default.
- W3085334857 cites W2990995515 @default.
- W3085334857 cites W2998852862 @default.
- W3085334857 cites W3004827935 @default.
- W3085334857 doi "https://doi.org/10.3389/fnhum.2020.00338" @default.
- W3085334857 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7522466" @default.
- W3085334857 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33100985" @default.
- W3085334857 hasPublicationYear "2020" @default.
- W3085334857 type Work @default.
- W3085334857 sameAs 3085334857 @default.
- W3085334857 citedByCount "50" @default.
- W3085334857 countsByYear W30853348572021 @default.
- W3085334857 countsByYear W30853348572022 @default.
- W3085334857 countsByYear W30853348572023 @default.
- W3085334857 crossrefType "journal-article" @default.
- W3085334857 hasAuthorship W3085334857A5002661071 @default.
- W3085334857 hasAuthorship W3085334857A5005817117 @default.
- W3085334857 hasAuthorship W3085334857A5011466106 @default.
- W3085334857 hasAuthorship W3085334857A5024818901 @default.
- W3085334857 hasAuthorship W3085334857A5041654385 @default.
- W3085334857 hasBestOaLocation W30853348571 @default.
- W3085334857 hasConcept C118552586 @default.
- W3085334857 hasConcept C12267149 @default.
- W3085334857 hasConcept C153180895 @default.
- W3085334857 hasConcept C154945302 @default.
- W3085334857 hasConcept C15744967 @default.
- W3085334857 hasConcept C173201364 @default.
- W3085334857 hasConcept C22019652 @default.
- W3085334857 hasConcept C2780573568 @default.
- W3085334857 hasConcept C28490314 @default.
- W3085334857 hasConcept C34736171 @default.
- W3085334857 hasConcept C41008148 @default.
- W3085334857 hasConcept C42407357 @default.
- W3085334857 hasConcept C50644808 @default.
- W3085334857 hasConcept C522805319 @default.
- W3085334857 hasConcept C52622490 @default.
- W3085334857 hasConcept C81363708 @default.
- W3085334857 hasConcept C86803240 @default.
- W3085334857 hasConceptScore W3085334857C118552586 @default.
- W3085334857 hasConceptScore W3085334857C12267149 @default.
- W3085334857 hasConceptScore W3085334857C153180895 @default.
- W3085334857 hasConceptScore W3085334857C154945302 @default.