Matches in SemOpenAlex for { <https://semopenalex.org/work/W3085338664> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W3085338664 abstract "Remote Health Monitoring (RHM) has the potential to increase operational safety in extreme environments. Negative stress exposure influences mission success or the short- and long-term health conditions of deployed personnel. To quantify negative stress, we introduce a washable smart textile with integrated sensors. Analyzing the transmitted sensor values, medical advisors monitor up to 72 sensor values in parallel in case of an average group size of eight people. In order to aggregate the amount of data, we propose a stress level scale that includes stress trends. To predict individual stress levels based on sensor data, environmental quantities and the individual physiological fingerprint, we train different machine learning models. To evaluate such models, we implement a data acquisition environment to label data snapshots. Therefore, we do not need to collect in-field data and expose humans to negative stress. Moreover, we can mock sensor failures and rare, but relevant, sensor value combinations that are difficult to acquire in real-world scenarios. Our evaluation environment identifies Random Forest Regressor from a set of 25 models to perform best to predict individual stress levels. This model performs 23.19 times better than a zero rule classifier to distinguish among nine stress levels for mission goal health condition and 10.50 times better for mission goal mission success. Finally, we present our current RHM user interface design. It addresses issues such as information overload, avatar sympathy and unnecessary navigation paths." @default.
- W3085338664 created "2020-09-21" @default.
- W3085338664 creator A5028553357 @default.
- W3085338664 creator A5046219983 @default.
- W3085338664 creator A5056069580 @default.
- W3085338664 creator A5073362890 @default.
- W3085338664 date "2020-09-10" @default.
- W3085338664 modified "2023-10-12" @default.
- W3085338664 title "Digital twin" @default.
- W3085338664 cites W2040869478 @default.
- W3085338664 cites W2086195034 @default.
- W3085338664 cites W2091707133 @default.
- W3085338664 cites W2105199144 @default.
- W3085338664 cites W2573003069 @default.
- W3085338664 doi "https://doi.org/10.1145/3410530.3414316" @default.
- W3085338664 hasPublicationYear "2020" @default.
- W3085338664 type Work @default.
- W3085338664 sameAs 3085338664 @default.
- W3085338664 citedByCount "8" @default.
- W3085338664 countsByYear W30853386642021 @default.
- W3085338664 countsByYear W30853386642022 @default.
- W3085338664 countsByYear W30853386642023 @default.
- W3085338664 crossrefType "proceedings-article" @default.
- W3085338664 hasAuthorship W3085338664A5028553357 @default.
- W3085338664 hasAuthorship W3085338664A5046219983 @default.
- W3085338664 hasAuthorship W3085338664A5056069580 @default.
- W3085338664 hasAuthorship W3085338664A5073362890 @default.
- W3085338664 hasConcept C107457646 @default.
- W3085338664 hasConcept C12267149 @default.
- W3085338664 hasConcept C124101348 @default.
- W3085338664 hasConcept C138885662 @default.
- W3085338664 hasConcept C154945302 @default.
- W3085338664 hasConcept C159985019 @default.
- W3085338664 hasConcept C192562407 @default.
- W3085338664 hasConcept C21036866 @default.
- W3085338664 hasConcept C41008148 @default.
- W3085338664 hasConcept C41895202 @default.
- W3085338664 hasConcept C4679612 @default.
- W3085338664 hasConcept C79403827 @default.
- W3085338664 hasConcept C95623464 @default.
- W3085338664 hasConceptScore W3085338664C107457646 @default.
- W3085338664 hasConceptScore W3085338664C12267149 @default.
- W3085338664 hasConceptScore W3085338664C124101348 @default.
- W3085338664 hasConceptScore W3085338664C138885662 @default.
- W3085338664 hasConceptScore W3085338664C154945302 @default.
- W3085338664 hasConceptScore W3085338664C159985019 @default.
- W3085338664 hasConceptScore W3085338664C192562407 @default.
- W3085338664 hasConceptScore W3085338664C21036866 @default.
- W3085338664 hasConceptScore W3085338664C41008148 @default.
- W3085338664 hasConceptScore W3085338664C41895202 @default.
- W3085338664 hasConceptScore W3085338664C4679612 @default.
- W3085338664 hasConceptScore W3085338664C79403827 @default.
- W3085338664 hasConceptScore W3085338664C95623464 @default.
- W3085338664 hasLocation W30853386641 @default.
- W3085338664 hasOpenAccess W3085338664 @default.
- W3085338664 hasPrimaryLocation W30853386641 @default.
- W3085338664 hasRelatedWork W148178222 @default.
- W3085338664 hasRelatedWork W1886884218 @default.
- W3085338664 hasRelatedWork W1980100242 @default.
- W3085338664 hasRelatedWork W2051187167 @default.
- W3085338664 hasRelatedWork W2090763504 @default.
- W3085338664 hasRelatedWork W2104657898 @default.
- W3085338664 hasRelatedWork W2530420969 @default.
- W3085338664 hasRelatedWork W4315815996 @default.
- W3085338664 hasRelatedWork W1910826599 @default.
- W3085338664 hasRelatedWork W1948992892 @default.
- W3085338664 isParatext "false" @default.
- W3085338664 isRetracted "false" @default.
- W3085338664 magId "3085338664" @default.
- W3085338664 workType "article" @default.