Matches in SemOpenAlex for { <https://semopenalex.org/work/W308539454> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W308539454 abstract "The coefficients in the 1/N expansions of the vacuum expectation values and correlation functions of Wilson loops, in continuum SU(N) gauge theories in 3+1 dimensions, are shown to be determined by a closed and complete set of equations, called the Group-Variation Equations, that exhibit a simple and robust mechanism for the emergence of massive glueballs and the Wilson area law. The equations predict that the cylinder-topology minimal-area spanning surface term in the two-glueball correlation function, when it exists, must be multiplied by a pre-exponential factor, which for large area A of the minimal-area cylinder-topology surface, decreases with increasing A at least as fast as $1/ln(sigma A)$. If this factor decreases faster than $1/ln(sigma A)$, then the mass $m_{0^{++}}$ of the lightest glueball, and the coefficient $sigma$ of the area in the Wilson area law, are determined in a precisely parallel manner, and the equations give a zeroth-order estimate of $m_{0^{++}}/sqrt{sigma}$ of 2.38, about 33% less than the best lattice value, without the need for a full calculation of any of the terms in the right-hand sides. The large distance behaviour of the vacuum expectation values and correlation functions is completely determined by terms called island diagrams, the dominant contributions to which come from islands of emph{fixed} size of about $1/sqrt{sigma}$. The value of $sigma$ is determined by the point at which $|beta(g)/g|$ reaches a critical value, and since the large distance behaviour of all physical quantities is determined by islands of the fixed size $1/sqrt{sigma}$, the running coupling $g^2$ never increases beyond the value at which $|beta(g)/g|$ reaches the critical value." @default.
- W308539454 created "2016-06-24" @default.
- W308539454 creator A5005617040 @default.
- W308539454 date "2001-02-18" @default.
- W308539454 modified "2023-09-27" @default.
- W308539454 title "Group-Variation Equations for the Coefficients in the 1/N Expansions of Physical Quantities in SU(N) Gauge Theories in D=3+1" @default.
- W308539454 cites W1585805741 @default.
- W308539454 cites W1948545948 @default.
- W308539454 cites W1978546836 @default.
- W308539454 cites W1989545275 @default.
- W308539454 cites W2008769196 @default.
- W308539454 cites W2009172517 @default.
- W308539454 cites W2015172045 @default.
- W308539454 cites W2016939318 @default.
- W308539454 cites W2018192827 @default.
- W308539454 cites W2019606091 @default.
- W308539454 cites W2030108950 @default.
- W308539454 cites W2041671263 @default.
- W308539454 cites W2055998973 @default.
- W308539454 cites W2058834119 @default.
- W308539454 cites W2061809405 @default.
- W308539454 cites W2088601854 @default.
- W308539454 cites W2104994244 @default.
- W308539454 cites W2124590498 @default.
- W308539454 cites W2136764900 @default.
- W308539454 cites W2150826420 @default.
- W308539454 cites W2151654771 @default.
- W308539454 cites W2172949211 @default.
- W308539454 cites W2331636816 @default.
- W308539454 cites W2952092356 @default.
- W308539454 cites W2963455637 @default.
- W308539454 cites W3103390310 @default.
- W308539454 cites W3122950569 @default.
- W308539454 cites W3123216072 @default.
- W308539454 hasPublicationYear "2001" @default.
- W308539454 type Work @default.
- W308539454 sameAs 308539454 @default.
- W308539454 citedByCount "1" @default.
- W308539454 crossrefType "posted-content" @default.
- W308539454 hasAuthorship W308539454A5005617040 @default.
- W308539454 hasConcept C114614502 @default.
- W308539454 hasConcept C121332964 @default.
- W308539454 hasConcept C181830111 @default.
- W308539454 hasConcept C200006409 @default.
- W308539454 hasConcept C24890656 @default.
- W308539454 hasConcept C2776465598 @default.
- W308539454 hasConcept C2778049214 @default.
- W308539454 hasConcept C2779430453 @default.
- W308539454 hasConcept C2781204021 @default.
- W308539454 hasConcept C33923547 @default.
- W308539454 hasConcept C37914503 @default.
- W308539454 hasConcept C62520636 @default.
- W308539454 hasConceptScore W308539454C114614502 @default.
- W308539454 hasConceptScore W308539454C121332964 @default.
- W308539454 hasConceptScore W308539454C181830111 @default.
- W308539454 hasConceptScore W308539454C200006409 @default.
- W308539454 hasConceptScore W308539454C24890656 @default.
- W308539454 hasConceptScore W308539454C2776465598 @default.
- W308539454 hasConceptScore W308539454C2778049214 @default.
- W308539454 hasConceptScore W308539454C2779430453 @default.
- W308539454 hasConceptScore W308539454C2781204021 @default.
- W308539454 hasConceptScore W308539454C33923547 @default.
- W308539454 hasConceptScore W308539454C37914503 @default.
- W308539454 hasConceptScore W308539454C62520636 @default.
- W308539454 hasLocation W3085394541 @default.
- W308539454 hasOpenAccess W308539454 @default.
- W308539454 hasPrimaryLocation W3085394541 @default.
- W308539454 hasRelatedWork W2153438353 @default.
- W308539454 hasRelatedWork W3031379044 @default.
- W308539454 hasRelatedWork W3103804895 @default.
- W308539454 isParatext "false" @default.
- W308539454 isRetracted "false" @default.
- W308539454 magId "308539454" @default.
- W308539454 workType "article" @default.