Matches in SemOpenAlex for { <https://semopenalex.org/work/W3085469666> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3085469666 abstract "Recently, studies in the field of Natural Language Processing and its related applications continue to mount up. Machine learning is proven to be predominantly data-driven in the sense that generic model building methods are used and then tailored to specific application domains. Needless to say, this has proven to be a very effective approach in modeling the complicated data dependencies we frequently experience in practice, making very few assumptions, and allowing the information to talk for themselves. Examples of these applications can be found in chemical process engineering, climate science, healthcare, and linguistic processing systems for natural languages, to name a few. Text classification is one of the important machine learning tasks that is used in many digital applications today; such as in document filtering, search engines, document management systems, and many more. Text classification is the process of categorizing of text documents into a given set of labels. Furthermore, multi-label text classification is the task of categorization of text documents into one or more labels simultaneously. Over the years, many methods for classifying text documents have been proposed, including the popularly known bag of words (BoW) method, support vector machine (SVM), tree induction, and label-vector embedding, to mention a few. These kinds of tools can be used in many digital applications, such as document filtering, search engines, document management systems, etc. Lately, deep learning-based approaches are getting more attention, especially in extreme multi-label text classification case. Deep learning has proven to be one of the major solutions to many machine learning applications, especially those involving high-dimensional and unstructured data. However, it is of paramount importance in many applications to be able to reason accurately about the uncertainties associated with the predictions of the models. In this paper, we explore and compare the recent deep learning-based methods for multi-label text classification. We investigate two scenarios. First, multi-label classification model with ordinary embedding layer, and second with Glove, word2vec, and FastText as pre-trained embedding corpus for the given models. We evaluated these different neural network model performances in terms of multi-label evaluation metrics for the two approaches, and compare the results with the previous studies." @default.
- W3085469666 created "2020-09-21" @default.
- W3085469666 creator A5027685807 @default.
- W3085469666 creator A5052618455 @default.
- W3085469666 creator A5058704364 @default.
- W3085469666 creator A5076293142 @default.
- W3085469666 date "2020-12-10" @default.
- W3085469666 modified "2023-10-18" @default.
- W3085469666 title "Multi-Label Classification of Text Documents Using Deep Learning" @default.
- W3085469666 cites W1558901573 @default.
- W3085469666 cites W1753402186 @default.
- W3085469666 cites W1832693441 @default.
- W3085469666 cites W1953606363 @default.
- W3085469666 cites W1999954155 @default.
- W3085469666 cites W2052684427 @default.
- W3085469666 cites W2064682403 @default.
- W3085469666 cites W2068074736 @default.
- W3085469666 cites W2084465406 @default.
- W3085469666 cites W2117130368 @default.
- W3085469666 cites W2119466907 @default.
- W3085469666 cites W2145827727 @default.
- W3085469666 cites W2158143121 @default.
- W3085469666 cites W2250539671 @default.
- W3085469666 cites W2470673105 @default.
- W3085469666 cites W2522701101 @default.
- W3085469666 cites W2584060612 @default.
- W3085469666 cites W2607041163 @default.
- W3085469666 cites W2610995990 @default.
- W3085469666 cites W2739996966 @default.
- W3085469666 cites W2759435421 @default.
- W3085469666 cites W2760392765 @default.
- W3085469666 cites W2897722020 @default.
- W3085469666 cites W2900282750 @default.
- W3085469666 cites W2900758626 @default.
- W3085469666 cites W2954992865 @default.
- W3085469666 cites W2734609266 @default.
- W3085469666 doi "https://doi.org/10.1109/bigdata50022.2020.9378266" @default.
- W3085469666 hasPublicationYear "2020" @default.
- W3085469666 type Work @default.
- W3085469666 sameAs 3085469666 @default.
- W3085469666 citedByCount "2" @default.
- W3085469666 countsByYear W30854696662022 @default.
- W3085469666 crossrefType "proceedings-article" @default.
- W3085469666 hasAuthorship W3085469666A5027685807 @default.
- W3085469666 hasAuthorship W3085469666A5052618455 @default.
- W3085469666 hasAuthorship W3085469666A5058704364 @default.
- W3085469666 hasAuthorship W3085469666A5076293142 @default.
- W3085469666 hasConcept C108583219 @default.
- W3085469666 hasConcept C111919701 @default.
- W3085469666 hasConcept C119857082 @default.
- W3085469666 hasConcept C12267149 @default.
- W3085469666 hasConcept C154945302 @default.
- W3085469666 hasConcept C177264268 @default.
- W3085469666 hasConcept C199360897 @default.
- W3085469666 hasConcept C202444582 @default.
- W3085469666 hasConcept C204321447 @default.
- W3085469666 hasConcept C23123220 @default.
- W3085469666 hasConcept C2780479914 @default.
- W3085469666 hasConcept C33923547 @default.
- W3085469666 hasConcept C41008148 @default.
- W3085469666 hasConcept C9652623 @default.
- W3085469666 hasConcept C98045186 @default.
- W3085469666 hasConceptScore W3085469666C108583219 @default.
- W3085469666 hasConceptScore W3085469666C111919701 @default.
- W3085469666 hasConceptScore W3085469666C119857082 @default.
- W3085469666 hasConceptScore W3085469666C12267149 @default.
- W3085469666 hasConceptScore W3085469666C154945302 @default.
- W3085469666 hasConceptScore W3085469666C177264268 @default.
- W3085469666 hasConceptScore W3085469666C199360897 @default.
- W3085469666 hasConceptScore W3085469666C202444582 @default.
- W3085469666 hasConceptScore W3085469666C204321447 @default.
- W3085469666 hasConceptScore W3085469666C23123220 @default.
- W3085469666 hasConceptScore W3085469666C2780479914 @default.
- W3085469666 hasConceptScore W3085469666C33923547 @default.
- W3085469666 hasConceptScore W3085469666C41008148 @default.
- W3085469666 hasConceptScore W3085469666C9652623 @default.
- W3085469666 hasConceptScore W3085469666C98045186 @default.
- W3085469666 hasLocation W30854696661 @default.
- W3085469666 hasOpenAccess W3085469666 @default.
- W3085469666 hasPrimaryLocation W30854696661 @default.
- W3085469666 hasRelatedWork W2520775273 @default.
- W3085469666 hasRelatedWork W2803710604 @default.
- W3085469666 hasRelatedWork W3136979370 @default.
- W3085469666 hasRelatedWork W4223943233 @default.
- W3085469666 hasRelatedWork W4285106639 @default.
- W3085469666 hasRelatedWork W4311106074 @default.
- W3085469666 hasRelatedWork W4312200629 @default.
- W3085469666 hasRelatedWork W4312831135 @default.
- W3085469666 hasRelatedWork W4360585206 @default.
- W3085469666 hasRelatedWork W4364306694 @default.
- W3085469666 isParatext "false" @default.
- W3085469666 isRetracted "false" @default.
- W3085469666 magId "3085469666" @default.
- W3085469666 workType "article" @default.