Matches in SemOpenAlex for { <https://semopenalex.org/work/W3085476572> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3085476572 endingPage "6317" @default.
- W3085476572 startingPage "6317" @default.
- W3085476572 abstract "On-board sensory systems in autonomous vehicles make it possible to acquire information about the vehicle itself and about its relevant surroundings. With this information the vehicle actuators are able to follow the corresponding control commands and behave accordingly. Localization is thus a critical feature in autonomous driving to define trajectories to follow and enable maneuvers. Localization approaches using sensor data are mainly based on Bayes filters. Whitebox models that are used to this end use kinematics and vehicle parameters, such as wheel radii, to interfere the vehicle’s movement. As a consequence, faulty vehicle parameters lead to poor localization results. On the other hand, blackbox models use motion data to model vehicle behavior without relying on vehicle parameters. Due to their high non-linearity, blackbox approaches outperform whitebox models but faulty behaviour such as overfitting is hardly identifiable without intensive experiments. In this paper, we extend blackbox models using kinematics, by inferring vehicle parameters and then transforming blackbox models into whitebox models. The probabilistic perspective of vehicle movement is extended using random variables representing vehicle parameters. We validated our approach, acquiring and analyzing simulated noisy movement data from mobile robots and vehicles. Results show that it is possible to estimate vehicle parameters with few kinematic assumptions." @default.
- W3085476572 created "2020-09-21" @default.
- W3085476572 creator A5004623095 @default.
- W3085476572 creator A5011765144 @default.
- W3085476572 creator A5035662406 @default.
- W3085476572 creator A5084269463 @default.
- W3085476572 date "2020-09-10" @default.
- W3085476572 modified "2023-10-16" @default.
- W3085476572 title "Autonomous Vehicles: Vehicle Parameter Estimation Using Variational Bayes and Kinematics" @default.
- W3085476572 cites W1990845378 @default.
- W3085476572 cites W2097545165 @default.
- W3085476572 cites W2151328498 @default.
- W3085476572 cites W2161906519 @default.
- W3085476572 cites W2192586580 @default.
- W3085476572 cites W2343568200 @default.
- W3085476572 cites W2549215376 @default.
- W3085476572 cites W2588289902 @default.
- W3085476572 cites W2592770378 @default.
- W3085476572 cites W2903072978 @default.
- W3085476572 cites W2907326933 @default.
- W3085476572 cites W2969619317 @default.
- W3085476572 cites W2972985172 @default.
- W3085476572 cites W2980325010 @default.
- W3085476572 cites W3101380508 @default.
- W3085476572 cites W3103406720 @default.
- W3085476572 doi "https://doi.org/10.3390/app10186317" @default.
- W3085476572 hasPublicationYear "2020" @default.
- W3085476572 type Work @default.
- W3085476572 sameAs 3085476572 @default.
- W3085476572 citedByCount "3" @default.
- W3085476572 countsByYear W30854765722020 @default.
- W3085476572 countsByYear W30854765722021 @default.
- W3085476572 countsByYear W30854765722022 @default.
- W3085476572 crossrefType "journal-article" @default.
- W3085476572 hasAuthorship W3085476572A5004623095 @default.
- W3085476572 hasAuthorship W3085476572A5011765144 @default.
- W3085476572 hasAuthorship W3085476572A5035662406 @default.
- W3085476572 hasAuthorship W3085476572A5084269463 @default.
- W3085476572 hasBestOaLocation W30854765721 @default.
- W3085476572 hasConcept C107673813 @default.
- W3085476572 hasConcept C121332964 @default.
- W3085476572 hasConcept C127413603 @default.
- W3085476572 hasConcept C138885662 @default.
- W3085476572 hasConcept C154945302 @default.
- W3085476572 hasConcept C171146098 @default.
- W3085476572 hasConcept C207201462 @default.
- W3085476572 hasConcept C22019652 @default.
- W3085476572 hasConcept C2776401178 @default.
- W3085476572 hasConcept C39920418 @default.
- W3085476572 hasConcept C41008148 @default.
- W3085476572 hasConcept C41895202 @default.
- W3085476572 hasConcept C50644808 @default.
- W3085476572 hasConcept C74650414 @default.
- W3085476572 hasConcept C79487989 @default.
- W3085476572 hasConceptScore W3085476572C107673813 @default.
- W3085476572 hasConceptScore W3085476572C121332964 @default.
- W3085476572 hasConceptScore W3085476572C127413603 @default.
- W3085476572 hasConceptScore W3085476572C138885662 @default.
- W3085476572 hasConceptScore W3085476572C154945302 @default.
- W3085476572 hasConceptScore W3085476572C171146098 @default.
- W3085476572 hasConceptScore W3085476572C207201462 @default.
- W3085476572 hasConceptScore W3085476572C22019652 @default.
- W3085476572 hasConceptScore W3085476572C2776401178 @default.
- W3085476572 hasConceptScore W3085476572C39920418 @default.
- W3085476572 hasConceptScore W3085476572C41008148 @default.
- W3085476572 hasConceptScore W3085476572C41895202 @default.
- W3085476572 hasConceptScore W3085476572C50644808 @default.
- W3085476572 hasConceptScore W3085476572C74650414 @default.
- W3085476572 hasConceptScore W3085476572C79487989 @default.
- W3085476572 hasIssue "18" @default.
- W3085476572 hasLocation W30854765721 @default.
- W3085476572 hasOpenAccess W3085476572 @default.
- W3085476572 hasPrimaryLocation W30854765721 @default.
- W3085476572 hasRelatedWork W2791824431 @default.
- W3085476572 hasRelatedWork W2989932438 @default.
- W3085476572 hasRelatedWork W3011996705 @default.
- W3085476572 hasRelatedWork W3085476572 @default.
- W3085476572 hasRelatedWork W3099765033 @default.
- W3085476572 hasRelatedWork W4200192197 @default.
- W3085476572 hasRelatedWork W4285802257 @default.
- W3085476572 hasRelatedWork W4313001311 @default.
- W3085476572 hasRelatedWork W4313289428 @default.
- W3085476572 hasRelatedWork W653042059 @default.
- W3085476572 hasVolume "10" @default.
- W3085476572 isParatext "false" @default.
- W3085476572 isRetracted "false" @default.
- W3085476572 magId "3085476572" @default.
- W3085476572 workType "article" @default.