Matches in SemOpenAlex for { <https://semopenalex.org/work/W3085482424> ?p ?o ?g. }
- W3085482424 endingPage "106716" @default.
- W3085482424 startingPage "106716" @default.
- W3085482424 abstract "Training support vector machines (SVMs) for pixel-based feature extraction purposes from aerial images requires selecting representative pixels (instances) as a training dataset. In this research, locality-sensitive hashing (LSH) is adopted for developing a new instance selection method which is referred to as DR.LSH. The intuition of DR.LSH rests on rapidly finding similar and redundant training samples and excluding them from the original dataset. The simple idea of this method alongside its linear computational complexity make it expeditious in coping with massive training data (millions of pixels). DR.LSH is benchmarked against two recently proposed methods on a dataset for building extraction with 23,750,000 samples obtained from the fusion of aerial images and point clouds. The results reveal that DR.LSH outperforms them in terms of both preservation rate and maintaining the generalization ability (classification loss). The source code of DR.LSH can be found in https://github.com/mohaslani/DR.LSH." @default.
- W3085482424 created "2020-09-21" @default.
- W3085482424 creator A5008648371 @default.
- W3085482424 creator A5065727903 @default.
- W3085482424 date "2020-12-01" @default.
- W3085482424 modified "2023-10-14" @default.
- W3085482424 title "A fast instance selection method for support vector machines in building extraction" @default.
- W3085482424 cites W1526351492 @default.
- W3085482424 cites W1751962365 @default.
- W3085482424 cites W1967400946 @default.
- W3085482424 cites W1974207438 @default.
- W3085482424 cites W1974981350 @default.
- W3085482424 cites W1993926867 @default.
- W3085482424 cites W2005622485 @default.
- W3085482424 cites W2009708400 @default.
- W3085482424 cites W2011762057 @default.
- W3085482424 cites W2014403077 @default.
- W3085482424 cites W2027781877 @default.
- W3085482424 cites W2047186067 @default.
- W3085482424 cites W2047300736 @default.
- W3085482424 cites W2066883679 @default.
- W3085482424 cites W2070420167 @default.
- W3085482424 cites W2077264955 @default.
- W3085482424 cites W2079055733 @default.
- W3085482424 cites W2087556827 @default.
- W3085482424 cites W2093778562 @default.
- W3085482424 cites W2094682449 @default.
- W3085482424 cites W2099085654 @default.
- W3085482424 cites W2114828048 @default.
- W3085482424 cites W2117186870 @default.
- W3085482424 cites W2122111042 @default.
- W3085482424 cites W2131082991 @default.
- W3085482424 cites W2132407367 @default.
- W3085482424 cites W2132870739 @default.
- W3085482424 cites W2136651098 @default.
- W3085482424 cites W2136824894 @default.
- W3085482424 cites W2151537585 @default.
- W3085482424 cites W2153995706 @default.
- W3085482424 cites W2192203593 @default.
- W3085482424 cites W2290883490 @default.
- W3085482424 cites W2408839727 @default.
- W3085482424 cites W2548532227 @default.
- W3085482424 cites W2598998899 @default.
- W3085482424 cites W2605548712 @default.
- W3085482424 cites W2770495564 @default.
- W3085482424 cites W2782485997 @default.
- W3085482424 cites W2793288240 @default.
- W3085482424 cites W2794606897 @default.
- W3085482424 cites W2802953259 @default.
- W3085482424 cites W2963213486 @default.
- W3085482424 cites W2988755919 @default.
- W3085482424 cites W319032569 @default.
- W3085482424 cites W4212883601 @default.
- W3085482424 cites W4236137412 @default.
- W3085482424 cites W4239510810 @default.
- W3085482424 cites W91477260 @default.
- W3085482424 doi "https://doi.org/10.1016/j.asoc.2020.106716" @default.
- W3085482424 hasPublicationYear "2020" @default.
- W3085482424 type Work @default.
- W3085482424 sameAs 3085482424 @default.
- W3085482424 citedByCount "12" @default.
- W3085482424 countsByYear W30854824242021 @default.
- W3085482424 countsByYear W30854824242022 @default.
- W3085482424 countsByYear W30854824242023 @default.
- W3085482424 crossrefType "journal-article" @default.
- W3085482424 hasAuthorship W3085482424A5008648371 @default.
- W3085482424 hasAuthorship W3085482424A5065727903 @default.
- W3085482424 hasBestOaLocation W30854824241 @default.
- W3085482424 hasConcept C119857082 @default.
- W3085482424 hasConcept C12267149 @default.
- W3085482424 hasConcept C124101348 @default.
- W3085482424 hasConcept C153180895 @default.
- W3085482424 hasConcept C154945302 @default.
- W3085482424 hasConcept C160633673 @default.
- W3085482424 hasConcept C38652104 @default.
- W3085482424 hasConcept C41008148 @default.
- W3085482424 hasConcept C67388219 @default.
- W3085482424 hasConcept C74270461 @default.
- W3085482424 hasConcept C99138194 @default.
- W3085482424 hasConceptScore W3085482424C119857082 @default.
- W3085482424 hasConceptScore W3085482424C12267149 @default.
- W3085482424 hasConceptScore W3085482424C124101348 @default.
- W3085482424 hasConceptScore W3085482424C153180895 @default.
- W3085482424 hasConceptScore W3085482424C154945302 @default.
- W3085482424 hasConceptScore W3085482424C160633673 @default.
- W3085482424 hasConceptScore W3085482424C38652104 @default.
- W3085482424 hasConceptScore W3085482424C41008148 @default.
- W3085482424 hasConceptScore W3085482424C67388219 @default.
- W3085482424 hasConceptScore W3085482424C74270461 @default.
- W3085482424 hasConceptScore W3085482424C99138194 @default.
- W3085482424 hasFunder F4320335322 @default.
- W3085482424 hasLocation W30854824241 @default.
- W3085482424 hasLocation W30854824242 @default.
- W3085482424 hasLocation W30854824243 @default.
- W3085482424 hasOpenAccess W3085482424 @default.
- W3085482424 hasPrimaryLocation W30854824241 @default.
- W3085482424 hasRelatedWork W2025617366 @default.
- W3085482424 hasRelatedWork W2041399278 @default.