Matches in SemOpenAlex for { <https://semopenalex.org/work/W3085654539> ?p ?o ?g. }
- W3085654539 endingPage "201" @default.
- W3085654539 startingPage "189" @default.
- W3085654539 abstract "Brain tumors are considered to be one of the most lethal types of tumor. Accurate segmentation of brain MRI is an important task for the analysis of neurological diseases. The mortality rate of brain tumors is increasing according to World Health Organization. Detection at early stages of brain tumors can increase the expectation of the patients’ survival. Concerning artificial intelligence approaches for clinical diagnosis of brain tumors, there is an increasing interest in segmentation approaches based on deep learning because of its ability of self-learning over large amounts of data. Deep learning is nowadays a very promising approach to develop effective solution for clinical diagnosis. This chapter provides at first some basic concepts and techniques behind brain tumor segmentation. Then the imaging techniques used for brain tumor visualization are described. Later on, the dataset and segmentation methods are discussed." @default.
- W3085654539 created "2020-09-21" @default.
- W3085654539 creator A5025282612 @default.
- W3085654539 creator A5056484383 @default.
- W3085654539 creator A5066365951 @default.
- W3085654539 date "2020-09-13" @default.
- W3085654539 modified "2023-10-16" @default.
- W3085654539 title "Deep Learning for Brain Tumor Segmentation" @default.
- W3085654539 cites W1641498739 @default.
- W3085654539 cites W1794121648 @default.
- W3085654539 cites W1884191083 @default.
- W3085654539 cites W1974239942 @default.
- W3085654539 cites W1983305472 @default.
- W3085654539 cites W2046105679 @default.
- W3085654539 cites W2052793745 @default.
- W3085654539 cites W2061582528 @default.
- W3085654539 cites W2110657911 @default.
- W3085654539 cites W2110998615 @default.
- W3085654539 cites W2117905499 @default.
- W3085654539 cites W2126301071 @default.
- W3085654539 cites W2126933312 @default.
- W3085654539 cites W2136160748 @default.
- W3085654539 cites W2145472211 @default.
- W3085654539 cites W2155549272 @default.
- W3085654539 cites W2310992461 @default.
- W3085654539 cites W2441649867 @default.
- W3085654539 cites W2525157777 @default.
- W3085654539 cites W2535593941 @default.
- W3085654539 cites W2587828787 @default.
- W3085654539 cites W2618999197 @default.
- W3085654539 cites W2751909359 @default.
- W3085654539 cites W2764063958 @default.
- W3085654539 cites W2767623272 @default.
- W3085654539 cites W2791422233 @default.
- W3085654539 cites W2792193061 @default.
- W3085654539 cites W2793006349 @default.
- W3085654539 cites W2794249786 @default.
- W3085654539 cites W2884542984 @default.
- W3085654539 cites W2888118982 @default.
- W3085654539 cites W2893483035 @default.
- W3085654539 cites W2897501303 @default.
- W3085654539 cites W2899479069 @default.
- W3085654539 cites W2920149494 @default.
- W3085654539 cites W2947735999 @default.
- W3085654539 cites W2963276418 @default.
- W3085654539 cites W2963284331 @default.
- W3085654539 cites W2963356165 @default.
- W3085654539 cites W2963730812 @default.
- W3085654539 cites W2963853763 @default.
- W3085654539 cites W2965867178 @default.
- W3085654539 cites W2968726102 @default.
- W3085654539 cites W2987022186 @default.
- W3085654539 cites W4255289481 @default.
- W3085654539 doi "https://doi.org/10.1007/978-981-15-6321-8_11" @default.
- W3085654539 hasPublicationYear "2020" @default.
- W3085654539 type Work @default.
- W3085654539 sameAs 3085654539 @default.
- W3085654539 citedByCount "3" @default.
- W3085654539 countsByYear W30856545392022 @default.
- W3085654539 countsByYear W30856545392023 @default.
- W3085654539 crossrefType "book-chapter" @default.
- W3085654539 hasAuthorship W3085654539A5025282612 @default.
- W3085654539 hasAuthorship W3085654539A5056484383 @default.
- W3085654539 hasAuthorship W3085654539A5066365951 @default.
- W3085654539 hasBestOaLocation W30856545391 @default.
- W3085654539 hasConcept C108583219 @default.
- W3085654539 hasConcept C119857082 @default.
- W3085654539 hasConcept C127413603 @default.
- W3085654539 hasConcept C142724271 @default.
- W3085654539 hasConcept C154945302 @default.
- W3085654539 hasConcept C201995342 @default.
- W3085654539 hasConcept C2779130545 @default.
- W3085654539 hasConcept C2780451532 @default.
- W3085654539 hasConcept C36464697 @default.
- W3085654539 hasConcept C41008148 @default.
- W3085654539 hasConcept C71924100 @default.
- W3085654539 hasConcept C89600930 @default.
- W3085654539 hasConceptScore W3085654539C108583219 @default.
- W3085654539 hasConceptScore W3085654539C119857082 @default.
- W3085654539 hasConceptScore W3085654539C127413603 @default.
- W3085654539 hasConceptScore W3085654539C142724271 @default.
- W3085654539 hasConceptScore W3085654539C154945302 @default.
- W3085654539 hasConceptScore W3085654539C201995342 @default.
- W3085654539 hasConceptScore W3085654539C2779130545 @default.
- W3085654539 hasConceptScore W3085654539C2780451532 @default.
- W3085654539 hasConceptScore W3085654539C36464697 @default.
- W3085654539 hasConceptScore W3085654539C41008148 @default.
- W3085654539 hasConceptScore W3085654539C71924100 @default.
- W3085654539 hasConceptScore W3085654539C89600930 @default.
- W3085654539 hasLocation W30856545391 @default.
- W3085654539 hasOpenAccess W3085654539 @default.
- W3085654539 hasPrimaryLocation W30856545391 @default.
- W3085654539 hasRelatedWork W2790662084 @default.
- W3085654539 hasRelatedWork W2948658236 @default.
- W3085654539 hasRelatedWork W3212329372 @default.
- W3085654539 hasRelatedWork W4223943233 @default.
- W3085654539 hasRelatedWork W4225161397 @default.
- W3085654539 hasRelatedWork W4293211451 @default.